Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(6): e2216244120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36716373

ABSTRACT

Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO2) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic performance; however, systemic investigation on the fitness contribution of individual gene has been limited. Here, we report genome-scale CRISPR interference screening using 41,939 guide RNAs designed from the E. limosum genome, one of the model acetogenic species, where all genes were targeted for transcriptional suppression. We investigated the fitness contributions of 96% of the total genes identified, revealing the gene fitness and essentiality for heterotrophic and autotrophic metabolisms. Our data show that the Wood-Ljungdahl pathway, membrane regeneration, membrane protein biosynthesis, and butyrate synthesis are essential for autotrophic acetogenesis in E. limosum. Furthermore, we discovered genes that are repression targets that unbiasedly increased autotrophic growth rates fourfold and acetoin production 1.5-fold compared to the wild-type strain under CO2-H2 conditions. These results provide insight for understanding acetogenic metabolism and genome engineering in acetogenic bacteria.


Subject(s)
Carbon Dioxide , Eubacterium , Carbon Dioxide/metabolism , Eubacterium/genetics , Eubacterium/metabolism , Autotrophic Processes , Genome, Bacterial
2.
Metab Eng ; 83: 160-171, 2024 May.
Article in English | MEDLINE | ID: mdl-38636729

ABSTRACT

Microbes have inherent capacities for utilizing various carbon sources, however they often exhibit sub-par fitness due to low metabolic efficiency. To test whether a bacterial strain can optimally utilize multiple carbon sources, Escherichia coli was serially evolved in L-lactate and glycerol. This yielded two end-point strains that evolved first in L-lactate then in glycerol, and vice versa. The end-point strains displayed a universal growth advantage on single and a mixture of adaptive carbon sources, enabled by a concerted action of carbon source-specialists and generalist mutants. The combination of just four variants of glpK, ppsA, ydcI, and rph-pyrE, accounted for more than 80% of end-point strain fitness. In addition, machine learning analysis revealed a coordinated activity of transcriptional regulators imparting condition-specific regulation of gene expression. The effectiveness of the serial adaptive laboratory evolution (ALE) scheme in bioproduction applications was assessed under single and mixed-carbon culture conditions, in which serial ALE strain exhibited superior productivity of acetoin compared to ancestral strains. Together, systems-level analysis elucidated the molecular basis of serial evolution, which hold potential utility in bioproduction applications.


Subject(s)
Carbon , Directed Molecular Evolution , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Carbon/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glycerol/metabolism , Lactic Acid/metabolism , Metabolic Engineering
3.
Nucleic Acids Res ; 50(7): 4171-4186, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357499

ABSTRACT

As the design of genetic circuitry for synthetic biology becomes more sophisticated, diverse regulatory bioparts are required. Despite their importance, well-characterized 3'-untranslated region (3'-UTR) bioparts are limited. Thus, transcript 3'-ends require further investigation to understand the underlying regulatory role and applications of the 3'-UTR. Here, we revisited the use of Term-Seq in the Escherichia coli strain K-12 MG1655 to enhance our understanding of 3'-UTR regulatory functions and to provide a diverse collection of tunable 3'-UTR bioparts with a wide termination strength range. Comprehensive analysis of 1,629 transcript 3'-end positions revealed multiple 3'-termini classes generated through transcription termination and RNA processing. The examination of individual Rho-independent terminators revealed a reduction in downstream gene expression over a wide range, which led to the design of novel synthetic metabolic valves that control metabolic fluxes in branched pathways. These synthetic metabolic valves determine the optimal balance of heterologous pathways for maximum target biochemical productivity. The regulatory strategy using 3'-UTR bioparts is advantageous over promoter- or 5'-UTR-based transcriptional control as it modulates gene expression at transcription levels without trans-acting element requirements (e.g. transcription factors). Our results provide a foundational platform for 3'-UTR engineering in synthetic biology applications.


Subject(s)
Escherichia coli , Synthetic Biology , 3' Untranslated Regions/genetics , 5' Untranslated Regions , Escherichia coli/genetics , Escherichia coli/metabolism , Promoter Regions, Genetic , Transcription, Genetic
4.
Nucleic Acids Res ; 50(D1): D1077-D1084, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791440

ABSTRACT

The transcriptional regulatory network in prokaryotes controls global gene expression mostly through transcription factors (TFs), which are DNA-binding proteins. Chromatin immunoprecipitation (ChIP) with DNA sequencing methods can identify TF binding sites across the genome, providing a bottom-up, mechanistic understanding of how gene expression is regulated. ChIP provides indispensable evidence toward the goal of acquiring a comprehensive understanding of cellular adaptation and regulation, including condition-specificity. ChIP-derived data's importance and labor-intensiveness motivate its broad dissemination and reuse, which is currently an unmet need in the prokaryotic domain. To fill this gap, we present proChIPdb (prochipdb.org), an information-rich, interactive web database. This website collects public ChIP-seq/-exo data across several prokaryotes and presents them in dashboards that include curated binding sites, nucleotide-resolution genome viewers, and summary plots such as motif enrichment sequence logos. Users can search for TFs of interest or their target genes, download all data, dashboards, and visuals, and follow external links to understand regulons through biological databases and the literature. This initial release of proChIPdb covers diverse organisms, including most major TFs of Escherichia coli, and can be expanded to support regulon discovery across the prokaryotic domain.


Subject(s)
Chromatin Immunoprecipitation , Chromatin/genetics , Databases, Genetic , Transcription Factors/genetics , Binding Sites/genetics , Chromatin/classification , Genome/genetics , Prokaryotic Cells , Protein Binding/genetics
5.
Article in English | MEDLINE | ID: mdl-38439699

ABSTRACT

The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production. ONE-SENTENCE SUMMARY: This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.


Subject(s)
Biological Products , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , CRISPR-Cas Systems , Genetic Engineering , Genome, Bacterial , Biological Products/metabolism , Gene Editing
6.
PLoS Genet ; 17(9): e1009821, 2021 09.
Article in English | MEDLINE | ID: mdl-34570751

ABSTRACT

RNA sequencing techniques have enabled the systematic elucidation of gene expression (RNA-Seq), transcription start sites (differential RNA-Seq), transcript 3' ends (Term-Seq), and post-transcriptional processes (ribosome profiling). The main challenge of transcriptomic studies is to remove ribosomal RNAs (rRNAs), which comprise more than 90% of the total RNA in a cell. Here, we report a low-cost and robust bacterial rRNA depletion method, RiboRid, based on the enzymatic degradation of rRNA by thermostable RNase H. This method implemented experimental considerations to minimize nonspecific degradation of mRNA and is capable of depleting pre-rRNAs that often comprise a large portion of RNA, even after rRNA depletion. We demonstrated the highly efficient removal of rRNA up to a removal efficiency of 99.99% for various transcriptome studies, including RNA-Seq, Term-Seq, and ribosome profiling, with a cost of approximately $10 per sample. This method is expected to be a robust method for large-scale high-throughput bacterial transcriptomic studies.


Subject(s)
Bacteria/genetics , Costs and Cost Analysis , RNA, Bacterial/isolation & purification , RNA, Ribosomal/isolation & purification , Transcriptome , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , Sequence Analysis, RNA/methods
7.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33619098

ABSTRACT

Acetogenic bacteria use cellular redox energy to convert CO2 to acetate using the Wood-Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H2 as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum The hybrid system converts CO2 into acetate without the need for additional energy sources, such as H2, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO2, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO2 fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.


Subject(s)
Acetates/chemistry , Bacterial Proteins/metabolism , Cadmium Compounds/chemistry , Carbon Dioxide/chemistry , Clostridium/metabolism , Electrons , Nanoparticles/chemistry , Sulfides/chemistry , Acetates/metabolism , Autotrophic Processes , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cadmium Compounds/metabolism , Carbon Dioxide/metabolism , Clostridium/genetics , Clostridium/radiation effects , Coenzymes/chemistry , Coenzymes/metabolism , Dinitrocresols/chemistry , Dinitrocresols/metabolism , Energy Metabolism/genetics , Gene Expression Regulation, Bacterial , Light , NAD/chemistry , NAD/metabolism , NADP/chemistry , NADP/metabolism , Nanoparticles/metabolism , Photosynthesis/genetics , Sulfides/metabolism , Transcription, Genetic
8.
Semin Cancer Biol ; 86(Pt 2): 1014-1025, 2022 11.
Article in English | MEDLINE | ID: mdl-33989734

ABSTRACT

Bacteria are associated with the human body and colonize the gut, skin, and mucous membranes. These associations can be either symbiotic or pathogenic. In either case, bacteria derive more benefit from their host. The ability of bacteria to enter and survive within the human body can be exploited for human benefit. They can be used as a vehicle for delivering or producing bioactive molecules, such as toxins and lytic enzymes, and eventually for killing tumor cells. Clostridium and Salmonella have been shown to infect and survive within the human body, including in tumors. There is a need to develop genetic circuits, which enable bacterial cells to carry out the following activities: (i) escape the human immune system, (ii) invade tumors, (iii) multiply within the tumorous cells, (iv) produce toxins via quorum sensing at low cell densities, and (v) express suicide genes to undergo cell death or cell lysis after the tumor has been lysed. Thus, bacteria have the potential to be exploited as anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Quorum Sensing , Bacteria , Neoplasms/drug therapy , Neoplasms/etiology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
9.
Biomacromolecules ; 24(11): 4915-4922, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37861681

ABSTRACT

In this study, we aimed to develop an efficient drug delivery system by reassembling vacuoles isolated from Saccharomyces cerevisiae. Initially, we assessed the impact of vacuolar enzymes on the efficacy of the loaded antibiotic polymyxin B (PMB), by conducting antibacterial activity tests using Shigella flexneri and Salmonella enteritidis. The results showed that vacuolar enzymes inhibited the effectiveness of PMB, highlighting the limitations of using natural vacuoles as drug carriers. To overcome this, we proposed a new drug delivery system called reassembled vacuoles (ReV). ReV particles were created by removing vacuolar enzymes and reassembling the vacuolar membrane through extrusion. ReV demonstrated improved structural stability, a more uniform size, and enhanced PMB release compared to natural vacuoles. Encapsulation efficiency tests revealed high loading efficiency for both normal vacuoles (NorV) and ReV, with over 80% efficiency at concentrations up to 600 µg/mL. The antibacterial activity of PMB-loaded ReV showed comparable results to PMB alone, indicating the potential of ReV as a drug delivery system. In conclusion, reassembled vacuoles offer a promising approach for drug delivery, addressing the limitations of natural vacuoles and providing opportunities for targeted and efficient drug release.


Subject(s)
Drug Carriers , Saccharomyces cerevisiae , Vacuoles/chemistry , Anti-Bacterial Agents/pharmacology , Polymyxin B/pharmacology , Drug Delivery Systems
10.
PLoS Comput Biol ; 18(5): e1010106, 2022 05.
Article in English | MEDLINE | ID: mdl-35604933

ABSTRACT

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly promising microbial chassis due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas carbon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB) during nutrient-limited conditions. Understanding the complex metabolic behaviour of this bacterium is a prerequisite for the design of successful engineering strategies for optimising product yields. We present a genome-scale metabolic model (GSM) of C. necator H16 (denoted iCN1361), which is directly constructed from the BioCyc database to improve the readability and reusability of the model. After the initial automated construction, we have performed extensive curation and both theoretical and experimental validation. By carrying out a genome-wide essentiality screening using a Transposon-directed Insertion site Sequencing (TraDIS) approach, we showed that the model could predict gene knockout phenotypes with a high level of accuracy. Importantly, we indicate how experimental and computational predictions can be used to improve model structure and, thus, model accuracy as well as to evaluate potential false positives identified in the experiments. Finally, by integrating transcriptomics data with iCN1361 we create a condition-specific model, which, importantly, better reflects PHB production in C. necator H16. Observed changes in the omics data and in-silico-estimated alterations in fluxes were then used to predict the regulatory control of key cellular processes. The results presented demonstrate that iCN1361 is a valuable tool for unravelling the system-level metabolic behaviour of C. necator H16 and can provide useful insights for designing metabolic engineering strategies.


Subject(s)
Cupriavidus necator , Biotechnology , Carbon Dioxide/metabolism , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Metabolic Engineering , Transcriptome
11.
EMBO Rep ; 22(2): e51790, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33463026

ABSTRACT

Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two-component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high-level ß-lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that ß-lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to ß-lactams. We propose that VxrAB reduces antibiotic-induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against ß-lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism's ability to counteract diverse antibiotic-induced stresses promotes high-level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.


Subject(s)
Vibrio cholerae , beta-Lactams , Animals , Anti-Bacterial Agents/pharmacology , Cell Wall , Mice , Vibrio cholerae/genetics , beta-Lactams/pharmacology
12.
Nucleic Acids Res ; 49(17): 9696-9710, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34428301

ABSTRACT

Bacteria regulate gene expression to adapt to changing environments through transcriptional regulatory networks (TRNs). Although extensively studied, no TRN is fully characterized since the identity and activity of all the transcriptional regulators comprising a TRN are not known. Here, we experimentally evaluate 40 uncharacterized proteins in Escherichia coli K-12 MG1655, which were computationally predicted to be transcription factors (TFs). First, we used a multiplexed chromatin immunoprecipitation method combined with lambda exonuclease digestion (multiplexed ChIP-exo) assay to characterize binding sites for these candidate TFs; 34 of them were found to be DNA-binding proteins. We then compared the relative location between binding sites and RNA polymerase (RNAP). We found 48% (283/588) overlap between the TFs and RNAP. Finally, we used these data to infer potential functions for 10 of the 34 TFs with validated DNA binding sites and consensus binding motifs. Taken together, this study: (i) significantly expands the number of confirmed TFs to 276, close to the estimated total of about 280 TFs; (ii) provides putative functions for the newly discovered TFs and (iii) confirms the functions of four representative TFs through mutant phenotypes.


Subject(s)
Escherichia coli K12/genetics , Escherichia coli Proteins/metabolism , Transcription Factors/metabolism , Binding Sites , Chromatin Immunoprecipitation Sequencing , Escherichia coli K12/metabolism , Transcription Factors/physiology
13.
Proc Natl Acad Sci U S A ; 117(13): 7516-7523, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32170009

ABSTRACT

Among CO2-fixing metabolic pathways in nature, the linear Wood-Ljungdahl pathway (WLP) in phylogenetically diverse acetate-forming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO2 to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genome-scale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO2, subsequently converting CO2 into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO2 consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Aminomethyltransferase/metabolism , Autotrophic Processes/physiology , Multienzyme Complexes/metabolism , Acetyl Coenzyme A/metabolism , Amino Acid Oxidoreductases/genetics , Aminomethyltransferase/genetics , Bacterial Proteins/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Clostridium/metabolism , Metabolic Networks and Pathways , Multienzyme Complexes/genetics , Multigene Family , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism
14.
Ecotoxicol Environ Saf ; 264: 115446, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37688866

ABSTRACT

Concerns over the spread of non-native species in aquatic environments have led to the need for effective methods to prevent and control their spread while protecting native species. This study investigated the potential of yeast vacuolar enzymes as a natural hatching inhibitor for controlling aquatic organisms. Hatching experiments with Daphnia magna eggs demonstrated that exposure to yeast vacuole enzymes inhibited hatching in a concentration-dependent manner, suggesting their potential as an effective inhibitor of egg hatching in aquatic organisms. Interestingly, the protease used for comparative purposes did not inhibit hatching, but instead increased the mortality of hatched D. magna. Additionally, chorionic changes were observed in non-hatched D. magna eggs and zebrafish eggs exposed to yeast vacuole enzymes, suggesting that the enzyme can alter the chorion and interfere with hatching. These findings suggest that yeast vacuolar enzymes may be a promising and natural management tool for controlling the spread of harmful aquatic organisms, and further research is warranted to explore their potential for species-specific control.


Subject(s)
Saccharomyces cerevisiae , Zebrafish , Animals , Daphnia , Aquatic Organisms , Vacuoles
15.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511505

ABSTRACT

The global demand for nucleic acid-based vaccines, including plasmid DNA (pDNA) and mRNA vaccines, needs efficient production platforms. However, conventional hosts for plasmid production have encountered challenges related to sequence integrity due to the presence of insertion sequences (ISs). In this study, we explored the potential of a genome-reduced Escherichia coli as a host for pDNA production. This strain had been constructed by removing approximately 23% of the genome which were unessential genes, including the genomic unstable elements. Moreover, the strain exhibits an elevated level of NADPH, a coenzyme known to increase plasmid production according to a mathematical model. We hypothesized that the combination of genome reduction and the abundance of NADPH would significantly enhance pDNA production capabilities. Remarkably, our results confirmed a three-fold increase in pDNA production compared to the widely employed DH5α strain. Furthermore, the genome-reduced strain exhibited heightened sensitivity to various antibiotics, bolstering its potential for large scale industrial pDNA production. These findings suggest the genome-reduced E. coli as an exciting candidate for revolutionizing the pDNA industry, offering unprecedented efficiency and productivity.


Subject(s)
Escherichia coli , Vaccines, DNA , Escherichia coli/genetics , NADP/genetics , Vaccines, DNA/genetics , Plasmids/genetics , DNA
16.
BMC Genomics ; 23(1): 68, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062881

ABSTRACT

BACKGROUND: The gram-positive bacterium, Streptomyces avermitilis, holds industrial importance as the producer of avermectin, a widely used anthelmintic agent, and a heterologous expression host of secondary metabolite-biosynthetic gene clusters. Despite its industrial importance, S. avermitilis' genome organization and regulation of gene expression remain poorly understood. In this study, four different types of Next-Generation Sequencing techniques, including dRNA-Seq, Term-Seq, RNA-Seq and ribosome profiling, were applied to S. avermitilis to determine transcription units of S. avermitilis at a genome-wide level and elucidate regulatory elements for transcriptional and translational control of individual transcription units. RESULT: By applying dRNA-Seq and Term-Seq to S. avermitilis MA-4680, a total of 2361 transcription start sites and 2017 transcript 3'-end positions were identified, respectively, leading to determination of 1601 transcription units encoded in S. avermitilis' genome. Cataloguing the transcription units and integrated analysis of multiple high-throughput data types revealed the presence of diverse regulatory elements for gene expression, such as promoters, 5'-UTRs, terminators, 3'-UTRs and riboswitches. The conserved promoter motifs were identified from 2361 transcription start sites as 5'-TANNNT and 5'-BTGACN for the - 10 and - 35 elements, respectively. The - 35 element and spacer lengths between - 10 and - 35 elements were critical for transcriptional regulation of functionally distinct genes, suggesting the involvement of unique sigma factors. In addition, regulatory sequences recognized by antibiotic regulatory proteins were identified from the transcription start site information. Analysis of the 3'-end of RNA transcript revealed that stem structure formation is a major determinant for transcription termination of most transcription units. CONCLUSIONS: The transcription unit architecture elucidated from the transcripts' boundary information provides insights for unique genetic regulatory mechanisms of S. avermitilis. Our findings will elevate S. avermitilis' potential as a production host for a diverse set of secondary metabolites.


Subject(s)
Streptomyces , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Ivermectin , Multigene Family , Sigma Factor , Streptomyces/genetics , Streptomyces/metabolism , Transcription Initiation Site
17.
Metab Eng ; 72: 215-226, 2022 07.
Article in English | MEDLINE | ID: mdl-35364280

ABSTRACT

Acetogenic bacteria demonstrate industrial potential for utilizing carbon dioxide (CO2) for biochemical production using the Wood-Ljungdahl pathway. However, the metabolic engineering of acetogenic bacteria has been hampered by the limited number of available genetic bioparts for gene expression. Here, we integrated RNA sequencing, ribosome profiling, differential RNA sequencing, and RNA 3'-end sequencing results of Eubacterium limosum to establish genetic bioparts, such as promoters, 5' untranslated regions, and transcript terminators, to regulate transcriptional and translational expression of genes composing of biosynthetic pathways. In addition, a transformation method for the strain was developed to efficiently deliver the obtained genetic bioparts into cells, resulting in a transformation efficiency of 2.5 × 105 CFU/µg DNA. Using this method, the genetic bioparts were efficiently introduced, and their strengths were measured, which were then applied to optimize the heterologous expression of acetolactate synthase and acetolactate decarboxylase for non-native biochemical acetoin production. The strategy developed in this study is the first report on integrating multi-omics data for biopart development of CO2 or syngas utilizing acetogenic bacteria, which lays a foundation for the efficient production of biochemicals from CO2 or syngas as a carbon feedstock under autotrophic growth conditions.


Subject(s)
Carbon Dioxide , Eubacterium , Autotrophic Processes , Carbon Dioxide/metabolism , Eubacterium/genetics , Eubacterium/metabolism , Gene Expression
18.
Metab Eng ; 69: 59-72, 2022 01.
Article in English | MEDLINE | ID: mdl-34775076

ABSTRACT

The microbial conversion of glycerol into value-added commodity products has emerged as an attractive means to meet the demands of biosustainability. However, glycerol is a non-preferential carbon source for productive fermentation because of its low energy density. We employed evolutionary and metabolic engineering in tandem to construct an Escherichia coli strain with improved GABA production using glycerol as the feedstock carbon. Adaptive evolution of E. coli W under glycerol-limited conditions for 1300 generations harnessed an adapted strain with a metabolic system optimized for glycerol utilization. Mutation profiling, enzyme kinetic assays, and transcriptome analysis of the adapted strain allowed us to decipher the basis of glycerol adaptation at the molecular level. Importantly, increased substrate influx mediated by the mutant glpK and modulation of intracellular cAMP levels were the key drivers of improved fitness in the glycerol-limited condition. Leveraging the enhanced capability of glycerol utilization in the strain, we constructed a GABA-producing E. coli W-derivative with superior GABA production compared to the wild-type. Furthermore, rationally designed inactivation of the non-essential metabolic genes, including ackA, mgsA, and gabT, in the glycerol-adapted strain improved the final GABA titer and specific productivity by 3.9- and 4.3-fold, respectively, compared with the wild-type.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Carbon/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Glycerol/metabolism , Laboratories , Metabolic Engineering , gamma-Aminobutyric Acid/genetics
19.
J Nanobiotechnology ; 20(1): 204, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477501

ABSTRACT

BACKGROUND: Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS: For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION: Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Glypicans/metabolism , Humans , Liver Neoplasms/pathology
20.
Nucleic Acids Res ; 48(18): 10157-10163, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32976587

ABSTRACT

A genome contains the information underlying an organism's form and function. Yet, we lack formal framework to represent and study this information. Here, we introduce the Bitome, a matrix composed of binary digits (bits) representing the genomic positions of genomic features. We form a Bitome for the genome of Escherichia coli K-12 MG1655. We find that: (i) genomic features are encoded unevenly, both spatially and categorically; (ii) coding and intergenic features are recapitulated at high resolution; (iii) adaptive mutations are skewed towards genomic positions with fewer features; and (iv) the Bitome enhances prediction of adaptively mutated and essential genes. The Bitome is a formal representation of a genome and may be used to study its fundamental organizational properties.


Subject(s)
Escherichia coli K12/genetics , Genome, Bacterial , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL