Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Food Res Int ; 172: 113134, 2023 10.
Article in English | MEDLINE | ID: mdl-37689898

ABSTRACT

Discovering new bioactivities and identifying active compounds of food materials are major fields of study in food science. However, the process commonly requires extensive experiments and can be technically challenging. In the current study, we employed network biology and cheminformatic approaches to predict new target diseases, active components, and related molecular mechanisms of propolis. Applying UHPLC-MS/MS analysis results of propolis to Context-Oriented Directed Associations (CODA) and Combination-Oriented Natural Product Database with Unified Terminology (COCONUT) systems indicated atopic dermatitis as a novel target disease. Experimental validation using cell- and human tissue-based models confirmed the therapeutic potential of propolis against atopic dermatitis. Moreover, we were able to find the major contributing compounds as well as their combinatorial effects responsible for the bioactivity of propolis. The CODA/COCONUT system also provided compound-associated genes explaining the underlying molecular mechanism of propolis. These results highlight the potential use of big data-driven network biological approaches to aid in analyzing the impact of food constituents at a systematic level.


Subject(s)
Ascomycota , Dermatitis, Atopic , Propolis , Humans , Propolis/pharmacology , Cheminformatics , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Cocos
2.
Exp Mol Med ; 54(1): 1-11, 2022 01.
Article in English | MEDLINE | ID: mdl-35079119

ABSTRACT

The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases.


Subject(s)
Chlorella , Probiotics , Functional Food , Immunity , Immunity, Innate , Immunomodulation , Probiotics/therapeutic use
3.
Antioxidants (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34829534

ABSTRACT

Rosa gallica is a widely used Rosa species for medicinal and culinary purposes. Rosa gallica has been reported to display antioxidant, anti-inflammatory, and antibacterial activities. However, the effect of Rosa gallica against skin aging in vivo is unknown and its active components have not been fully understood. Oral administration of Rosa gallica prevented UVB-mediated skin wrinkle formation and loss of collagen/keratin fibers in the dorsal skin of mice. Examination of biomarkers at the molecular level showed that Rosa gallica downregulates UVB-induced COX-2 and MMP-1 expression in the skin. Through a direct comparison of major compounds identified using the UHPLC-MS/MS system, we discovered gallic acid as the primary component contributing to the anti-skin aging effect exhibited by Rosa gallica. Examination of the molecular mechanism revealed that gallic acid can potently and selectively target the c-Raf/MEK/ERK/c-Fos signaling axis. In addition, both gallic acid and MEK inhibitor blocked UVB-induced MMP-1 expression and restored collagen levels in a reconstructed 3D human skin model. Collectively, Rosa gallica could be used as a functional ingredient in the development of nutraceuticals against skin aging.

SELECTION OF CITATIONS
SEARCH DETAIL