ABSTRACT
BACKGROUND: Long COVID is a debilitating chronic condition that has affected over 100 million people globally. It is characterized by a diverse array of symptoms, including fatigue, cognitive dysfunction and respiratory problems. Studies have so far largely failed to identify genetic associations, the mechanisms behind the disease, or any common pathophysiology with other conditions such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) that present with similar symptoms. METHODS: We used a combinatorial analysis approach to identify combinations of genetic variants significantly associated with the development of long COVID and to examine the biological mechanisms underpinning its various symptoms. We compared two subpopulations of long COVID patients from Sano Genetics' Long COVID GOLD study cohort, focusing on patients with severe or fatigue dominant phenotypes. We evaluated the genetic signatures previously identified in an ME/CFS population against this long COVID population to understand similarities with other fatigue disorders that may be triggered by a prior viral infection. Finally, we also compared the output of this long COVID analysis against known genetic associations in other chronic diseases, including a range of metabolic and neurological disorders, to understand the overlap of pathophysiological mechanisms. RESULTS: Combinatorial analysis identified 73 genes that were highly associated with at least one of the long COVID populations included in this analysis. Of these, 9 genes have prior associations with acute COVID-19, and 14 were differentially expressed in a transcriptomic analysis of long COVID patients. A pathway enrichment analysis revealed that the biological pathways most significantly associated with the 73 long COVID genes were mainly aligned with neurological and cardiometabolic diseases. Expanded genotype analysis suggests that specific SNX9 genotypes are a significant contributor to the risk of or protection against severe long COVID infection, but that the gene-disease relationship is context dependent and mediated by interactions with KLF15 and RYR3. Comparison of the genes uniquely associated with the Severe and Fatigue Dominant long COVID patients revealed significant differences between the pathways enriched in each subgroup. The genes unique to Severe long COVID patients were associated with immune pathways such as myeloid differentiation and macrophage foam cells. Genes unique to the Fatigue Dominant subgroup were enriched in metabolic pathways such as MAPK/JNK signaling. We also identified overlap in the genes associated with Fatigue Dominant long COVID and ME/CFS, including several involved in circadian rhythm regulation and insulin regulation. Overall, 39 SNPs associated in this study with long COVID can be linked to 9 genes identified in a recent combinatorial analysis of ME/CFS patient from UK Biobank. Among the 73 genes associated with long COVID, 42 are potentially tractable for novel drug discovery approaches, with 13 of these already targeted by drugs in clinical development pipelines. From this analysis for example, we identified TLR4 antagonists as repurposing candidates with potential to protect against long term cognitive impairment pathology caused by SARS-CoV-2. We are currently evaluating the repurposing potential of these drug targets for use in treating long COVID and/or ME/CFS. CONCLUSION: This study demonstrates the power of combinatorial analytics for stratifying heterogeneous populations in complex diseases that do not have simple monogenic etiologies. These results build upon the genetic findings from combinatorial analyses of severe acute COVID-19 patients and an ME/CFS population and we expect that access to additional independent, larger patient datasets will further improve the disease insights and validate potential treatment options in long COVID.
Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/diagnosis , Post-Acute COVID-19 Syndrome , COVID-19/complications , COVID-19/genetics , SARS-CoV-2 , Risk FactorsABSTRACT
BACKGROUND: Evidence of global heterochromatin decay and aberrant gene expression in models of physiological and premature ageing have long supported the "heterochromatin loss theory of ageing", which proposes that ageing is aetiologically linked to, and accompanied by, a progressive, generalised loss of repressive epigenetic signatures. However, the remarkable plasticity of chromatin conformation suggests that the re-establishment of such marks could potentially revert the transcriptomic architecture of animal cells to a "younger" state, promoting longevity and healthspan. To expand our understanding of the ageing process and its connection to chromatin biology, we screened an RNAi library of chromatin-associated factors for increased longevity phenotypes. RESULTS: We identified the lysine demethylases jmjd-3.2 and utx-1, as well as the lysine methyltransferase mes-2 as regulators of both lifespan and healthspan in C. elegans. Strikingly, we found that both overexpression and loss of function of jmjd-3.2 and utx-1 are all associated with enhanced longevity. Furthermore, we showed that the catalytic activity of UTX-1, but not JMJD-3.2, is critical for lifespan extension in the context of overexpression. In attempting to reconcile the improved longevity associated with both loss and gain of function of utx-1, we investigated the alternative lifespan pathways and tissue specificity of longevity outcomes. We demonstrated that lifespan extension caused by loss of utx-1 function is daf-16 dependent, while overexpression effects are partially independent of daf-16. In addition, lifespan extension was observed when utx-1 was knocked down or overexpressed in neurons and intestine, whereas in the epidermis, only knockdown of utx-1 conferred improved longevity. CONCLUSIONS: We show that the regulation of longevity by chromatin modifiers can be the result of the interaction between distinct factors, such as the level and tissue of expression. Overall, we suggest that the heterochromatin loss model of ageing may be too simplistic an explanation of organismal ageing when molecular and tissue-specific effects are taken into account.
Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Longevity/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolismABSTRACT
Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.
Subject(s)
Chromatin/metabolism , Histones/metabolism , Promoter Regions, Genetic , RNA, Antisense/biosynthesis , Transcription, Genetic , Acetylation , Chromatin/chemistry , Chromatin Assembly and Disassembly , Galactokinase/genetics , Gene Deletion , Genes, Fungal , Histone Chaperones/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/geneticsABSTRACT
Following the initial observation that methyl methanesulphonate induced binucleated cells in the AHH-1 line and a significant number of them contained micronuclei, human lymphoblastoid TK6 and mouse lymphoma L5178Y cells were treated with methyl methanesulphonate, methylnitrosourea, mitomycin C, cytosine arabinoside, colchicine and triton X. All except triton X induced binucleated cells in both lines but an increased micronucleus incidence in them was seen only in TK6. The two lines also differed in the numbers of binucleates in the control cultures with 2.0% and 0.5% in TK6 and L5178Y, respectively, and a much higher proportion of those in TK6 contained micronuclei. The differences in behaviour between the two cell lines could not clearly be ascribed to their P53 status. Colchicine induced binucleates in both cell lines but they did not contain increased numbers of micronuclei. The effect on binucleate incidence was not a non-specific cytotoxic response because no increase was seen with triton X even at highly cytotoxic concentrations. The initial concern that not scoring micronuclei in binucleated cells might lead to erroneous results in in vitro micronucleus tests not using a cytokinesis block, was not proven because all the genotoxins tested here induced significant increases in micronucleus frequency in mononuclear cells. When testing less potently active agents in in vitro micronucleus tests not employing a cytokinesis block, care should be taken to understand better this phenomenon and not to include these damaged cells until we do.