Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nano Lett ; 22(3): 1316-1323, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35049311

ABSTRACT

On-demand NW light sources in a photonic integrated circuit (PIC) have faced several practical challenges. Here, we report on an all-graphene-contact, electrically pumped, on-demand transferrable NW source that is fabricated by implementing an all-graphene-contact approach in combination with a highly accurate microtransfer printing technique. A vertically p-i-n-doped top-down-fabricated semiconductor NW with optical gain structures is electrically pumped through the patterned multilayered graphene contacts. Electroluminescence (EL) spectroscopy results reveal that the electrically driven NW device exhibits strong EL emission between the contacts and displays waveguiding properties. Further, a single NW device is precisely integrated into an existing photonic waveguide to perform light coupling and waveguiding experiments. Three-dimensional numerical simulation results show a good agreement with experimental observations. We believe that our all-graphene-contact approach is readily applicable to various micro/nanostructures and devices, which facilitates stable electrical operation and thus extends their practical applicability in compact integrated circuits.

2.
Opt Express ; 25(19): 22750-22759, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29041581

ABSTRACT

In this study, we proposed morphology-modulated Si nanowires (NWs) with a hexagonal cross-section and numerically investigated their resonant optical absorption and scattering properties. The calculated absorption and scattering efficiency spectra of the NWs exhibited optical resonances that could be controlled by tuning the aspect ratio (AR) of the NW cross-sectional shapes. The spectra also revealed interesting spectral behaviors including resonant peak shifts in the absorption spectrum and asymmetric line shapes in the scattering spectrum. To achieve spatially confined and wavelength-selective light absorption, we periodically modulated the geometry of the diameter in a single NW by combining two different ARs; we call these "diameter-modulated NWs." We designed various diameter-modulated NWs with short and long pitch sizes, and we observed unique and interesting features in the optical resonance and corresponding light absorption spectra such as grating modes and three-dimensional cavity modes. The proposed diameter-modulated NWs can be promising building blocks for the nanoscale localized light absorption and detection in compact nanophotonic integrated circuits.

3.
Nano Lett ; 16(3): 1650-6, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26910271

ABSTRACT

Direct detection of hot electrons generated by exothermic surface reactions on nanocatalysts is an effective strategy to obtain insight into electronic excitation during chemical reactions. For this purpose, we fabricated a novel catalytic nanodiode based on a Schottky junction between a single layer of graphene and an n-type TiO2 layer that enables the detection of hot electron flows produced by hydrogen oxidation on Pt nanoparticles. By making a comparative analysis of data obtained from measuring the hot electron current (chemicurrent) and turnover frequency, we demonstrate that graphene's unique electronic structure and extraordinary material properties, including its atomically thin nature and ballistic electron transport, allow improved conductivity at the interface between the catalytic Pt nanoparticles and the support. Thereby, graphene-based nanodiodes offer an effective and facile way to approach the study of chemical energy conversion mechanisms in composite catalysts with carbon-based supports.

4.
Cell Physiol Biochem ; 36(1): 85-99, 2015.
Article in English | MEDLINE | ID: mdl-25924984

ABSTRACT

OBJECTIVES: Human mesenchymal stem cells (MSCs) are efficacious in various cellular therapeutic applications and have been isolated from several tissues. Recent studies have reported that human tonsil tissue contains a new source of progenitor cells, potentially applicable for cell-based therapies. Information about the effects of donor age, long-term passage and cryopreservation are essential for clinical applications and cell-based therapies. Therefore, the authors investigated how the morphology, cell-surface markers, proliferation potential and differentiation capacity of tonsil-derived MSCs (T-MSCs) were affected by donor age, long-term passage, and cryopreservation. MATERIALS AND METHODS: T-MSCs were isolated from tonsillar tissue of 20 patients undergoing tonsillectomy. Authors evaluated the effects of donor-age, long-term passage, and cryopreservation on the morphology, surface markers, proliferation potential and differentiation capacities of T-MSCs. RESULTS: T-MSCs exhibited a fibroblast-like, spindle-shaped appearance. There were no significant morphological differences according to donor age, long-term passage or cryopreservation. T-MSCs isolated from donors of various ages were positive for markers CD90, CD44, and CD73, but negative for CD45, CD31, and HLA-DR. There were no significant differences in the expression of positive and negative surface markers as a function of donor age, long-term passage and cryopreservation. T-MSCs from different donor age groups showed similar proliferation potentials after passage 2. After long-term passage and cryopreservation, there were no significant morphological differences. Cryopreservation did not affect the proliferation potential of T-MSCs, but there was a significant decrease in the proliferation potential in long-term passage T-MSCs (passage 15). The effect of donor age, long-term passage and cryopreservation on the in vitro adipogenic, osteogenic, and chondrogenic differentiation potential of T-MSCs was not significant. CONCLUSION: The effect of donor age, long-term passage culture, and cryopreservation on T-MSC properties are negligible, except for the proliferation capacity of long-term cultured T-MSCs. Therefore, T-MSCs are considered to be promising MSCs that can be used as future alternative sources for autologous or allogenic MSCs.


Subject(s)
Cell Culture Techniques/methods , Cryopreservation/methods , Mesenchymal Stem Cells/physiology , Palatine Tonsil/cytology , Tissue Donors , Age Factors , Biomarkers/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Child , Humans , Mesenchymal Stem Cells/metabolism , Middle Aged , Palatine Tonsil/surgery , Time Factors
5.
Small ; 10(18): 3685-91, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-24832822

ABSTRACT

Graphene leading to high surface-to-volume ratio and outstanding conductivity is applied for gas molecule sensing with fully utilizing its unique transparent and flexible functionalities which cannot be expected from solid-state gas sensors. In order to attain a fast response and rapid recovering time, the flexible sensors also require integrated flexible and transparent heaters. Here, large-scale flexible and transparent gas molecule sensor devices, integrated with a graphene sensing channel and a graphene transparent heater for fast recovering operation, are demonstrated. This combined all-graphene device structure enables an overall device optical transmittance that exceeds 90% and reliable sensing performance with a bending strain of less than 1.4%. In particular, it is possible to classify the fast (≈14 s) and slow (≈95 s) response due to sp(2) -carbon bonding and disorders on graphene and the self-integrated graphene heater leads to the rapid recovery (≈11 s) of a 2 cm × 2 cm sized sensor with reproducible sensing cycles, including full recovery steps without significant signal degradation under exposure to NO2 gas.

6.
Nanotechnology ; 25(47): 475302, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25380080

ABSTRACT

We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ∼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.

7.
Nano Lett ; 13(9): 4068-74, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23981113

ABSTRACT

Hysteretic metal-insulator transitions (MIT) mediated by ionic dynamics or ferroic phase transitions underpin emergent applications for nonvolatile memories and logic devices. The vast majority of applications and studies have explored the MIT coupled to the electric field or temperarture. Here, we argue that MIT coupled to ionic dynamics should be controlled by mechanical stimuli, the behavior we refer to as the piezochemical effect. We verify this effect experimentally and demonstrate that it allows both studying materials physics and enabling novel data storage technologies with mechanical writing and current-based readout.


Subject(s)
Metals/chemistry , Nanotechnology , Electric Conductivity , Information Storage and Retrieval , Nanostructures/chemistry
8.
Nanoscale ; 16(24): 11524-11529, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38819792

ABSTRACT

2D nanostructures of noble metals hold great potential for developing efficient electrocatalysts due to their high atom efficiency associated with their large specific surface area and abundant active sites. Here, we introduce a one-pot solvothermal synthesis method that can enable the fabrication of freestanding atomically thin Ir nanosheets. The thermal decomposition of a complex of Ir and a long-chain amine, which could readily be formed with the assistance of a strong base, under CO flow conditions successfully yielded Ir nanosheets consisting of 2-4 atomic layers. The prepared Ir nanosheets showed prominent activity and stability toward oxygen evolution electrocatalysis in acidic conditions, which can be attributed to their ultrathin 2D structure.

9.
Nano Converg ; 11(1): 34, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174704

ABSTRACT

Since the discovery of graphene and its remarkable properties, researchers have actively explored advanced graphene-patterning technologies. While the etching process is pivotal in shaping graphene channels, existing etching techniques have limitations such as low speed, high cost, residue contamination, and rough edges. Therefore, the development of facile and efficient etching methods is necessary. This study entailed the development of a novel technique for patterning graphene through dry etching, utilizing selective photochemical reactions precisely targeted at single-layer graphene (SLG) surfaces. This process is facilitated by an excimer ultraviolet lamp emitting light at a wavelength of 172 nm. The effectiveness of this technique in selectively removing SLG over large areas, leaving the few-layer graphene intact and clean, was confirmed by various spectroscopic analyses. Furthermore, we explored the application of this technique to device fabrication, revealing its potential to enhance the electrical properties of SLG-based devices. One-dimensional (1D) edge contacts fabricated using this method not only exhibited enhanced electrical transport characteristics compared to two-dimensional contact devices but also demonstrated enhanced efficiency in fabricating conventional 1D-contacted devices. This study addresses the demand for advanced technologies suitable for next-generation graphene devices, providing a promising and versatile graphene-patterning approach with broad applicability and high efficiency.

10.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177039

ABSTRACT

Graphene has immense potential as a material for electronic devices owing to its unique electrical properties. However, large-area graphene produced by chemical vapor deposition (CVD) must be transferred from the as-grown copper substrate to an arbitrary substrate for device fabrication. The conventional wet transfer technique, which uses FeCl3 as a Cu etchant, leaves microscale impurities from the substrate, and the etchant adheres to graphene, thereby degrading its electrical performance. To address this limitation, this study introduces a modified transfer process that utilizes a temporary UV-treated SiO2 substrate to adsorb impurities from graphene before transferring it onto the final substrate. Optical microscopy and Raman mapping confirmed the adhesion of impurities to the temporary substrate, leading to a clean graphene/substrate interface. The retransferred graphene shows a reduction in electron-hole asymmetry and sheet resistance compared to conventionally transferred graphene, as confirmed by the transmission line model (TLM) and Hall effect measurements (HEMs). These results indicate that only the substrate effects remain in action in the retransferred graphene, and most of the effects of the impurities are eliminated. Overall, the modified transfer process is a promising method for obtaining high-quality graphene suitable for industrial-scale utilization in electronic devices.

11.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36014709

ABSTRACT

Graphene oxides with different degrees of oxidation are prepared by controlling UV irradiation on graphene, and the charge transport and the evolution of the transport gap are investigated according to the extent of oxidation. With increasing oxygenous defect density nD, a transition from ballistic to diffusive conduction occurs at nD≃1012 cm-2 and the transport gap grows in proportion to nD. Considering the potential fluctuation related to the e-h puddle, the bandgap of graphene oxide is deduced to be Eg≃30nD(1012cm-2) meV. The temperature dependence of conductivity showed metal-insulator transitions at nD≃0.3×1012 cm-2, consistent with Ioffe-Regel criterion. For graphene oxides at nD≥4.9×1012 cm-2, analysis indicated charge transport occurred via 2D variable range hopping conduction between localized sp2 domain. Our work elucidates the transport mechanism at different extents of oxidation and supports the possibility of adjusting the bandgap with oxygen content.

12.
Sci Rep ; 10(1): 8258, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32427899

ABSTRACT

Interlayer coupling in graphene-based van der Waals (vdW) heterostructures plays a key role in determining and modulating their physical properties. Hence, its influence on the optical and electronic properties cannot be overlooked in order to promote various next-generation applications in electronic and opto-electronic devices based on the low-dimensional materials. Herein, the optical and electrical properties of the vertically stacked large area heterostructure of the monolayer graphene transferred onto a monolayer graphene oxide film are investigated. An effective and stable p-doping property of this structure is shown by comparison to that of the graphene device fabricated on a silicon oxide substrate. Through Raman spectroscopy and density functional theory calculations of the charge transport characteristics, it is found that graphene is affected by sustainable p-doping effects induced from underneath graphene oxide even though they have weak interlayer interactions. This finding can facilitate the development of various fascinating graphene-based heterostructures and extend their practical applications in integrated devices with advanced functionalities.

13.
Sci Rep ; 9(1): 19826, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31863038

ABSTRACT

Raman spectroscopy is the most commonly used method to investigate structures of materials. Recently, few-layered IV-VI 2D materials (SnS, SnSe, GeS, and GeSe) have been found and ignited significant interest in electronic and optical applications. However, unlike few-layer graphene, in which its interlayer structures such as the number of its layers are confirmed through measurement of the Raman scattering, few-layer IV-VI 2D materials have not yet been developed to the point of understanding their interlayer structure. Here we performed first-principles calculations on Raman spectroscopy for few-layer IV-VI 2D materials. In addition to achieving consistent results with measurements of bulk structures, we revealed significant red and blue shifts of characteristic Raman modes up to 100 cm-1 associated with the layer number. These shifts of lattice vibrational modes originate from the change of the bond lengths between the metal atoms and chalcogen atoms through the change of the interlayer interactions. Particularly, our study shows weak covalent bonding between interlayers, making the evolution of Raman signals according to the thickness different from other vdW materials. Our results suggest a new way for obtaining information of layer structure of few-layer IV-VI 2D materials through Raman spectroscopy.

14.
Adv Wound Care (New Rochelle) ; 8(5): 186-194, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31119062

ABSTRACT

Objective: Inactivation of poly(ADP-ribose) polymerase 1 (PARP1) has been found to have protective effect in several fibrotic diseases. But the effect is not studied yet in keloids. Herein, we evaluated the therapeutic effect of PARP1 inhibitor, rucaparib, for keloids. Approach: The protein expressions of PARP1 and smad3 were evaluated with western blotting in keloids and controls. The effect of rucaparib was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and migration assay. We further analyzed the effect of rucaparib on patient-derived keloid xenograft murine model. Results: The protein expressions of PARP1 and smad3 were significantly higher in keloid tissue. Rucaparib (20 µM) significantly suppressed the proliferation of keloid fibroblasts. Moreover, the combination of rucaparib (20 µM) and triamcinolone (50 µM) showed additive suppressive effect on keloid fibroblasts. Migration assay showed that rucaparib (10 µM) significantly suppressed the migration of keloid fibroblasts. Fibrosis markers in keloid fibroblasts significantly decreased after rucaparib treatment (20 µM). In patient-derived keloid xenograft model, rucaparib significantly reduced the size of keloid tissue. Innovation and Conclusion: The study data suggest PARP1 might be a novel therapeutic target for keloid disease. PARP1 inhibitor, rucaparib, might be a promising therapeutic drug for the treatment of keloid disease.

15.
Nanoscale ; 11(11): 4735-4742, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30839984

ABSTRACT

To utilize graphene as interconnection electrodes in high-density nanoelectronic structures, the electrical stability of graphene should be guaranteed under nanometer-scale deviations. Graphene-ribbon (GR) junctions with accessible dimensions (i.e., sub-micrometer widths) are used in diverse interconnection electrode applications and should be characterized properly if they are to be applied in high-density nanoelectronics. Analyzing the effects of nanoscale GR width variations on the conductance of the entire graphene electrode is necessary for their proper characterization. Here, we diagnose the conductance and thermal effect of graphene electrode junctions constructed from GRs of various widths and directions under gate-tuned voltages. On applying partial gate voltages, we identify the effect of local potential variance on the entire graphene electrode junction. As a result, we were able to perceive precise and minute conductance variations for the entire graphene electrode, arising mainly from different sub-micrometer-scale widths of the GRs, which could not be distinguished using conventional global gating methods.

16.
Sci Rep ; 8(1): 571, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330376

ABSTRACT

Since the successful exfoliation of graphene, various methodologies have been developed to identify the number of layers of exfoliated graphene. The optical contrast, Raman G-peak intensity, and 2D-peak line-shape are currently widely used as the first level of inspection for graphene samples. Although the combination analysis of G- and 2D-peaks is powerful for exfoliated graphene samples, its use is limited in chemical vapor deposition (CVD)-grown graphene because CVD-grown graphene consists of various domains with randomly rotated crystallographic axes between layers, which makes the G- and 2D-peaks analysis difficult for use in number identification. We report herein that the Raman Si-peak intensity can be a universal measure for the number identification of multilayered graphene. We synthesized a few-layered graphene via the CVD method and performed Raman spectroscopy. Moreover, we measured the Si-peak intensities from various individual graphene domains and correlated them with the corresponding layer numbers. We then compared the normalized Si-peak intensity of the CVD-grown multilayer graphene with the exfoliated multilayer graphene as a reference and successfully identified the layer number of the CVD-grown graphene. We believe that this Si-peak analysis can be further applied to various 2-dimensional (2D) materials prepared by both exfoliation and chemical growth.

17.
J Phys Chem Lett ; 8(15): 3482-3487, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28697599

ABSTRACT

Common experience shows that friction converts mechanical energy into heat. The first part of this process is vibrational excitation of atoms at the interface between rubbing bodies. The second part is the removal of the vibration energy by transferring it from the interface to the substrate. However, it is difficult to disentangle the excitation and energy transfer processes. We solved this by using a system consisting of a SiO2-terminated tip sliding over graphene deposited on mica with intercalated water between them. The intercalated water was found to increase friction by a factor of ∼3 relative to dry mica. Density functional theory calculations show that water broadens the spectral range of graphene vibrations-particularly the low-frequency flexural modes-thus providing new excitation channels and also by increasing the overlap with the atomic vibrations of the mica substrate, which facilitates coupling and energy transfer.

18.
Nanoscale ; 9(47): 18644-18650, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29075708

ABSTRACT

van der Waals (vdW) heterostructures with two-dimensional (2D) crystals such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDCs) allow us to demonstrate atomically thin field-effect transistors (FETs), photodetectors (PDs) and photovoltaic devices capable of higher performance and greater stability levels than conventional devices. Although there have been studies of gas molecule sensing with 2D crystal channels, vdW heterostructures based on 2D crystals have not been employed thus far. Here, utilizing graphene/WS2/graphene (G/WS2/G) vdW heterostructure tunnel FETs, we demonstrate the rectification behavior of the sensitivity signal by tuning the WS2 potential barriers as a function of the gas molecule concentration and devise a fingerprint map of the sensitivity variation corresponding to an individual ratio of two different molecules in a gas mixture. Because the separation of different gas molecule concentrations from gas mixtures is in high demand in the gas-sensing research field, this result will greatly assist in the progress on selective gas sensing.

19.
Sci Rep ; 6: 27549, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27271245

ABSTRACT

Carrier multiplication (i.e. generation of multiple electron-hole pairs from a single high-energy electron, CM) in graphene has been extensively studied both theoretically and experimentally, but direct application of hot carrier multiplication in graphene has not been reported. Here, taking advantage of efficient CM in graphene, we fabricated graphene/TiO2 Schottky nanodiodes and found CM-driven enhancement of quantum efficiency. The unusual photocurrent behavior was observed and directly compared with Fowler's law for photoemission on metals. The Fowler's law exponent for the graphene-based nanodiode is almost twice that of a thin gold film based diode; the graphene-based nanodiode also has a weak dependence on light intensity-both are significant evidence for CM in graphene. Furthermore, doping in graphene significantly modifies the quantum efficiency by changing the Schottky barrier. The CM phenomenon observed on the graphene/TiO2 nanodiodes can lead to intriguing applications of viable graphene-based light harvesting.

20.
Sci Rep ; 6: 24525, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27080164

ABSTRACT

Graphene has been received a considerable amount of attention as a transparent conducting electrode (TCE) which may be able to replace indium tin oxide (ITO) to overcome the significant weakness of the poor flexibility of ITO. Given that graphene is the thinnest 2-dimensional (2D) material known, it shows extremely high flexibility, and its lateral periodic honeycomb structure of sp(2)-bonded carbon atoms enables ~2.3% of incident light absorption per layer. However, there is a trade-off between the electrical resistance and the optical transmittance, and the fixed absorption rate in graphene limits is use when fabricating devices. Therefore, a more efficient method which continuously controls the optical and electrical properties of graphene is needed. Here, we introduce a method which controls the optical transmittance and the electrical resistance of graphene through various thicknesses of the top Cu layers with a Cu/Ni metal catalyst structure used to fabricate a planar mesh pattern of single and multi-layer graphene. We exhibit a continuous transmittance change from 85% (MLG) to 97.6% (SLG) at an incident light wavelength of 550 nm on graphene samples simultaneously grown in a CVD quartz tube. We also investigate the relationships between the sheet resistances.

SELECTION OF CITATIONS
SEARCH DETAIL