Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Emerg Infect Dis ; 25(6): 1161-1168, 2019 06.
Article in English | MEDLINE | ID: mdl-30900977

ABSTRACT

The unexpectedly large outbreak of Middle East respiratory syndrome in South Korea in 2015 was initiated by an infected traveler and amplified by several "superspreading" events. Previously, we reported the emergence and spread of mutant Middle East respiratory syndrome coronavirus bearing spike mutations (I529T or D510G) with reduced affinity to human receptor CD26 during the outbreak. To assess the potential association of spike mutations with superspreading events, we collected virus genetic information reported during the outbreak and systemically analyzed the relationship of spike sequences and epidemiology. We found sequential emergence of the spike mutations in 2 superspreaders. In vivo virulence of the mutant viruses seems to decline in human patients, as assessed by fever duration in affected persons. In addition, neutralizing activity against these 2 mutant viruses in serum samples from mice immunized with wild-type spike antigen were gradually reduced, suggesting emergence and wide spread of neutralization escapers during the outbreak.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Adult , Aged , Antibodies, Neutralizing/immunology , Communicable Diseases, Emerging/history , Communicable Diseases, Emerging/immunology , Coronavirus Infections/history , Coronavirus Infections/immunology , Disease Outbreaks , Female , Genotype , History, 21st Century , Humans , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
J Nanosci Nanotechnol ; 19(10): 6647-6655, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31027005

ABSTRACT

A new gas sensor working in room temperature, which is compatible with silicon fabrication technology is presented. Porous silicon nanowires (NWs) were synthesized by metal-assisted chemical etching method and then TeO2 NWs branches were attached to their stem by thermal evaporation of Te powders in the presence of air. Afterwards TeO2 branched porous Si NWs were functionalized by Pt via sputtering followed by low temperature thermal annealing. Scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy collectively confirmed successful formation of TeO2 branched porous Si NWs functionalized by Pt nanoparticles. Their gas sensing properties in the presence of CO, C6H6 and C7H8 were tested at room temperature, for Si wafer, pristine porous Si NWs, pristine TeO2 branched porous Si NWs, and Pt functionalized TeO2 branched porous Si NWs sensors. Pt functionalized TeO2 branched porous Si NWs have higher responses to all tested gases than the other sensors. The origin of high response is discussed in detail. This new room temperature gas sensor can open a new aperture for development of gas sensors with minimum energy consumption which are compatible with silicon fabrication technology.

3.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 1-11, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27751885

ABSTRACT

Members of the herpesviral family use multiple strategies to hijack infected host cells and exploit cellular signaling for their pathogenesis and latent infection. Among the most intriguing weapons in the arsenal of pathogenic herpesviruses are the constitutively active virally-encoded G protein-coupled receptors (vGPCRs). Even though vGPCRs contribute to viral pathogenesis such as immune evasion and proliferative disorders, the molecular details of how vGPCRs continuously activate cellular signaling are largely unknown. Here, we report that the vGPCR of Herpesvirus saimiri (HVS), an oncogenic γ2-herpesvirus, constitutively activates T cells via a heteromeric interaction with cellular CXCR4. Constitutive T cell activation also occurs with expression of the vGPCR of Kaposi's sarcoma-associated herpesvirus (KSHV), but not the vGPCR of Epstein-Barr virus. Expression of HVS vGPCR down-regulated the surface expression of CXCR4 but did not induce the degradation of the chemokine receptor, suggesting that vGPCR/CXCR4 signaling continues in cytosolic compartments. The physical association of vGPCR with CXCR4 was demonstrated by proximity ligation assay as well as immunoprecipitation. Interestingly, the constitutive activation of T cells by HVS vGPCR is independent of proximal T cell receptor (TCR) signaling molecules, such as TCRß, Lck, and ZAP70, whereas CXCR4 silencing by shRNA abolished T cell activation by vGPCRs of HVS and KSHV. Furthermore, previously identified inactive vGPCR mutants failed to interact with CXCR4. These findings on the positive cooperativity of vGPCR with cellular CXCR4 in T cell activation extend our current understanding of the molecular mechanisms of vGPCR function and highlight the importance of heteromerization for GPCR activity.


Subject(s)
Herpesvirus 2, Saimiriine/metabolism , Herpesvirus 8, Human/metabolism , Receptors, CXCR4/genetics , Receptors, Chemokine/genetics , T-Lymphocytes/virology , Gene Expression Regulation , HEK293 Cells , Herpesvirus 2, Saimiriine/genetics , Herpesvirus 2, Saimiriine/growth & development , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/growth & development , Herpesvirus 4, Human/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/growth & development , Host-Pathogen Interactions , Humans , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Primary Cell Culture , Protein Binding , Protein Multimerization , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism
4.
Nanotechnology ; 29(29): 294001, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29714169

ABSTRACT

We report the room-temperature sensing characteristics of Si nanowires (NWs) fabricated from p-Si wafers by a metal-assisted chemical etching method, which is a facile and low-cost method. X-ray diffraction was used to the the study crystallinity and phase formation of Si NWs, and product morphology was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After confirmation of Si NW formation via the SEM and TEM micrographs, sensing tests were carried out at room temperature, and it was found that the Si NW sensor prepared from Si wafers with a resistivity of 0.001-0.003 Ω.cm had the highest response to NO2 gas (Rg/Ra = 1.86 for 50 ppm NO2), with a fast response (15 s) and recovery (30 s) time. Furthermore, the sensor responses to SO2, toluene, benzene, H2, and ethanol were nearly negligible, demonstrating the excellent selectivity to NO2 gas. The gas-sensing mechanism is discussed in detail. The present sensor can operate at room temperature, and is compatible with the microelectronic fabrication process, demonstrating its promise for next-generation Si-based electronics fused with functional chemical sensors.

5.
J Nanobiotechnology ; 14(1): 76, 2016 Nov 26.
Article in English | MEDLINE | ID: mdl-27887623

ABSTRACT

BACKGROUND: Zinc oxide nanoparticle (ZNP) has been applied in various biomedical fields. Here, we investigated the usage of ZNP as an antigen carrier for vaccine development by combining a high affinity peptide to ZNP. RESULTS: A novel zinc oxide-binding peptide (ZBP), FPYPGGDA, with high affinity to ZNP (K a  = 2.26 × 106 M-1) was isolated from a random peptide library and fused with a bacterial antigen, ScaA of Orientia tsutsugamushi, the causative agent of scrub typhus. The ZNP/ZBP-ScaA complex was efficiently phagocytosed by a dendritic cell line, DC2.4, in vitro and significantly enhanced anti-ScaA antibody responses in vivo compared to control groups. In addition, immunization with the ZNP/ZBP-ScaA complex promoted the generation of IFN-γ-secreting T cells in an antigen-dependent manner. Finally, we observed that ZNP/ZBP-ScaA immunization provided protective immunity against lethal challenge of O. tsutsugamushi, indicating that ZNP can be used as a potent adjuvant when complexed with ZBP-conjugated antigen. CONCLUSIONS: ZNPs possess good adjuvant potential as a vaccine carrier when combined with an antigen having a high affinity to ZNP. When complexed with ZBP-ScaA antigen, ZNPs could induce strong antibody responses as well as protective immunity against lethal challenges of O. tsutsugamushi. Therefore, application of ZNPs combined with a specific soluble antigen could be a promising strategy as a novel vaccine carrier system.


Subject(s)
Antigens, Bacterial/immunology , Metal Nanoparticles/chemistry , Orientia tsutsugamushi/metabolism , Scrub Typhus/prevention & control , Zinc Oxide/chemistry , Amino Acid Sequence , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Biocompatible Materials/chemistry , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , Mice , Mice, Inbred C57BL , Orientia tsutsugamushi/immunology , Peptides/chemistry , Phagocytosis , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Scrub Typhus/veterinary , Vaccination
6.
Infect Immun ; 81(2): 552-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23230293

ABSTRACT

Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. After entry into host cells, the bacterium rapidly escapes from the endosomal pathway and replicates in the cytosol of eukaryotic host cells. Here we show that O. tsutsugamushi infection efficiently promotes cellular autophagy, a cell-autonomous defense mechanism of innate immunity. However, most of the internalized bacteria barely colocalized with the induced autophagosomes, even when stimulated with rapamycin, a chemical inducer of autophagy. Treatment of infected cells with tetracycline suppressed bacterial evasion from autophagy and facilitated O. tsutsugamushi targeting to autophagosomes, suggesting that the intracellular pathogen may be equipped with a bacterial factor or factors that block autophagic recognition. Finally, we also found that chemical modulators of cellular autophagy or genetic knockout of the atg3 gene does not significantly affect the intracellular growth of O. tsutsugamushi in vitro. These results suggest that O. tsutsugamushi has evolved to block autophagic microbicidal defense by evading autophagic recognition even though it activates the autophagy pathway during the early phase of infection.


Subject(s)
Autophagy/immunology , Orientia tsutsugamushi/immunology , Scrub Typhus/immunology , Animals , Anti-Bacterial Agents/pharmacology , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Fibroblasts/drug effects , Fibroblasts/immunology , HeLa Cells , Humans , Mice , Orientia tsutsugamushi/drug effects , Orientia tsutsugamushi/genetics , Scrub Typhus/drug therapy , Scrub Typhus/genetics , Scrub Typhus/microbiology
7.
Dalton Trans ; 52(11): 3386-3390, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36811336

ABSTRACT

The authors report a Br doping effect on the NO2 gas sensing properties of a two-dimensional (2D) SnSe2 semiconductor. Single crystalline 2D SnSe2 samples with different Br contents are grown by a simple melt-solidification method. By analyzing the structural, vibrational as well as electrical properties, it can be confirmed that the Br impurity substitutes on the Se-site in SnSe2 serving as an efficient electron donor. When we measure the change of resistance under a 20 ppm NO2 gas flow condition at room temperature, both responsivity and response time are drastically improved by Br doping from 1.02% and 23 s to 3.38% and 15 s, respectively. From these results, it can be concluded that Br doping plays a key role for encouraging the charge transfer efficiency from the SnSe2 surface to the NO2 molecule by elaborating Fermi level in 2D SnSe2.

8.
Discov Nano ; 18(1): 47, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37382702

ABSTRACT

A high-performance gas sensor operating at room temperature is always favourable since it simplifies the device fabrication and lowers the operating power by eliminating a heater. Herein, we fabricated the ammonia (NH3) gas sensor by using Au nanoparticle-decorated TiO2 nanosheets, which were synthesized via two distinct processes: (1) preparation of monolayer TiO2 nanosheets through flux growth and a subsequent chemical exfoliation and (2) decoration of Au nanoparticles on the TiO2 nanosheets via hydrothermal method. Based on the morphological, compositional, crystallographic, and surface characteristics of this low-dimensional nano-heterostructured material, its temperature- and concentration-dependent NH3 gas-sensing properties were investigated. A high response of ~ 2.8 was obtained at room temperature under 20 ppm NH3 gas concentration by decorating Au nanoparticles onto the surface of TiO2 nanosheets, which generated oxygen defects and induced spillover effect as well.

9.
J Gen Virol ; 93(Pt 2): 330-340, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22012462

ABSTRACT

Herpesvirus saimiri (HVS), a T-lymphotropic monkey herpesvirus, induces fulminant T-cell lymphoma in non-natural primate hosts. In addition, it can immortalize human T-cells in vitro. HVS tyrosine kinase-interacting protein (Tip) is an essential viral gene required for T-cell transformation both in vitro and in vivo. In this study, we found that Tip interacts with the STAT6 transcription factor and induces phosphorylation of STAT6 in T-cells. The interaction with STAT6 requires the Tyr(127) residue and Lck-binding domain of Tip, which are indispensable for interleukin (IL)-2-independent T-cell transformation by HVS. It was also demonstrated that Tip induces nuclear translocation of STAT6, as well as activation of STAT6-dependent transcription in Jurkat T-cells. Interestingly, the phosphorylated STAT6 mainly colocalized with vesicles containing Tip within T-cells, but was barely detectable in the nucleus. However, nuclear translocation of phospho-STAT6 and transcriptional activation of STAT6 by IL-4 stimulation were not affected significantly in T-cells expressing Tip. Collectively, these findings suggest that the constitutive activation of STAT6 by Tip in T-cells may contribute to IL-2-independent T-cell transformation by HVS.


Subject(s)
Cell Transformation, Viral , Herpesvirus 2, Saimiriine/pathogenicity , Jurkat Cells/immunology , Jurkat Cells/virology , Phosphoproteins/metabolism , STAT6 Transcription Factor/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Humans , Protein Interaction Mapping , Transcription, Genetic
10.
Infect Immun ; 79(4): 1718-27, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21282412

ABSTRACT

Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen whose mechanism of cellular adhesion and invasion is poorly characterized. Bioinformatic analyses of two O. tsutsugamushi genomes revealed the presence of a group of genes that encode autotransporter proteins. In this study, we identified 10 autotransporter gene products and categorized them into five groups of orthologs (ScaA to ScaE) based on their sequence similarities. Sequence homology was highest between members of ScaC group, suggesting the functional conservation of bacterium-host interactions. ScaC was actively expressed on the surface of O. tsutsugamushi and induced antibody responses in scrub typhus patients. Experiments using microbeads conjugated to recombinant ScaC or a surrogate Escherichia coli expression system showed that ScaC was sufficient to mediate attachment to, but not invasion of, nonphagocytic mammalian cells. In addition, preincubation of host cells with recombinant ScaC significantly inhibited their interaction with O. tsutsugamushi. Finally, fibronectin was identified as a potential receptor for ScaC by using yeast two-hybrid screening, and this was confirmed using a glutathione S-transferase (GST) pulldown assay. Taken together, these results demonstrate that ScaC is involved in the interaction of O. tsutsugamushi with mammalian host cells and suggest that ScaC may play a critical role in bacterial pathogenesis.


Subject(s)
Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Orientia tsutsugamushi/genetics , Orientia tsutsugamushi/pathogenicity , Virulence Factors/genetics , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Surface/genetics , Antigens, Surface/immunology , Bacterial Proteins/immunology , Base Sequence , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , HeLa Cells , Humans , Immunoblotting , Microscopy, Fluorescence , Molecular Sequence Data , Orientia tsutsugamushi/immunology , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Scrub Typhus/genetics , Scrub Typhus/immunology , Vero Cells , Virulence Factors/immunology
11.
Microb Pathog ; 50(6): 326-30, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21362468

ABSTRACT

Calcium signaling has been implicated in various steps in bacterial pathogenesis. Here, we investigated the role of Ca(2+) signaling in intracellular invasion of non-phagocytic host cells infected with Orientia tsutsugamushi, the causative agent of scrub typhus. The bacteria induced a transient Ca(2+) increase in HeLa cells immediately after infection and the source of the mobilized Ca(2+) appears to be intracellular stores, not the extracellular milieu, as determined using extracellular (EGTA) or intracellular (BAPTA-AM) Ca(2+) chelators. O. tsutsugamushi rapidly induced activation of PLC-γ1, as indicated by tyrosine phosphorylation. PLC-γ1 activity increased within 1 min of infection and returned to the basal level by 5 min. Pretreatment of host cells with inhibitors of PLC-γ1 (U73122) or IP3R channel activity (2-APB) significantly blocked bacterial entry without affecting bacterial attachment. In addition, these chemical inhibitors were effective in suppressing not only the activation of ERK MAP kinase but also the expression of the chemokine MCP-1. Taken together, Ca(2+) signaling induced by O. tsutsugamushi may play a crucial role in bacterial pathogenesis including inflammatory reactions as well as intracellular invasion into non-phagocytic host cells.


Subject(s)
Calcium Signaling/physiology , Orientia tsutsugamushi/metabolism , Orientia tsutsugamushi/pathogenicity , Scrub Typhus/metabolism , Boron Compounds/pharmacology , Calcium/antagonists & inhibitors , Calcium/metabolism , Calcium Signaling/drug effects , Chelating Agents/pharmacology , Chemokines/biosynthesis , Chemokines/metabolism , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Orientia tsutsugamushi/drug effects , Phagocytes/metabolism , Phospholipase C gamma/antagonists & inhibitors , Phospholipase C gamma/metabolism , Phosphorylation , Scrub Typhus/microbiology , Tyrosine/metabolism
12.
Proteomics ; 10(8): 1699-715, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20186754

ABSTRACT

Orientia tsutsugamushi, an obligate intracellular bacterium, is the causative agent of Scrub typhus. The control mechanisms for bacterial gene expression are largely unknown. Here, the global gene expression of O. tsutsugamushi within eukaryotic cells was examined using a microarray and proteomic approaches for the first time. These approaches identified 643 genes, corresponding to approximately 30% of the genes encoded in the genome. The majority of expressed genes belonged to several functional categories including protein translation, protein processing/secretion, and replication/repair. We also searched the conserved sequence blocks (CSBs) in the O. tsutsugamushi genome which is unique in that up to 40% of its genome consists of dispersed repeated sequences. Although extensive shuffling of genomic sequences was observed between two different strains, 204 CSBs, covering 48% of the genome, were identified. When combining the data of CSBs and global gene expression, the CSBs correlates well with the location of expressed genes, suggesting the functional conservation between gene expression and genomic location. Finally, we compared the gene expression of the bacteria-infected fibroblasts and macrophages using microarray analysis. Some major changes were the downregulation of genes involved in translation, protein processing and secretion, which correlated with the reduction in bacterial translation rates and growth within macrophages.


Subject(s)
Orientia tsutsugamushi/genetics , Animals , Cell Line , Conserved Sequence , Fibroblasts/chemistry , Fibroblasts/metabolism , Gene Expression Profiling , Genome, Bacterial , Macrophages/chemistry , Macrophages/metabolism , Mice , Proteome , RNA, Messenger/genetics
13.
Infect Immun ; 78(5): 1915-23, 2010 May.
Article in English | MEDLINE | ID: mdl-20160019

ABSTRACT

Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. Previously, we reported that the 56-kDa type-specific antigen (TSA56), a major outer membrane protein of O. tsutsugamushi, binds to fibronectin and facilitates bacterial entry into the host cell, potentially via an interaction with integrins. Here, we demonstrated that O. tsutsugamushi colocalizes with integrin alpha 5 beta 1 and activates integrin signaling effectors, including focal adhesion kinase, Src kinase, and RhoA GTPase, and also recruits signaling adaptors, such as talin and paxillin, to the site of infection. Inhibition of protein tyrosine kinases or RhoA reduced intracellular invasion. We also observed substantial actin reorganization and membrane protrusions at the sites of infection of nonphagocytic host cells. Finally, we identified a region in the extracellular domain of TSA56 that binds to fibronectin. A peptide containing this region was able to significantly reduce bacterial invasion. Taken together, these results clearly indicate that O. tsutsugamushi exploits integrin-mediated signaling and the actin cytoskeleton for invasion of eukaryotic host cells.


Subject(s)
Cytoskeleton/metabolism , Endocytosis , Integrin alpha5beta1/metabolism , Orientia tsutsugamushi/pathogenicity , Signal Transduction , Animals , Antigens, Bacterial/metabolism , Cell Line , Humans , Mice , Microscopy, Confocal , Paxillin/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Talin/metabolism , rhoA GTP-Binding Protein/metabolism , src-Family Kinases/metabolism
14.
PLoS Pathog ; 4(11): e1000209, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19023411

ABSTRACT

Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.


Subject(s)
Cell Membrane/virology , Herpesvirus 2, Saimiriine/enzymology , Phosphoproteins/chemistry , Phosphoproteins/physiology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/virology , Viral Proteins/chemistry , Viral Proteins/physiology , CD4 Antigens , Cell Membrane/ultrastructure , Down-Regulation , Humans , Jurkat Cells , Lipids , Lysosomes , Membrane Microdomains/metabolism , Membrane Microdomains/virology , Phosphoproteins/metabolism , Protein Structure, Secondary , T-Lymphocytes/ultrastructure , Viral Proteins/metabolism
15.
Sci Rep ; 10(1): 19026, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33149173

ABSTRACT

An unstable energy-unbalanced state such as superheating or supercooling is often unexpectedly observed because a factor of energy depends not only on the temperature but is a product of temperature (T) and entropy (S). Thus, at the same temperature, if the entropy is different, the total energy of the system can be different. In such cases, the temperature-change-rate cannot match the entropy-change-rate, which results in a hysteresis curve for the temperature/entropy relationship. Due to the difference between the temperature- and entropy-change-rates, properties of a material, such as the boiling and freezing points, can be extended from point to area. This study confirmed that depending on the heating rate, tin powders exhibit different melting points. Given the contemporary reinterpretation of many energy-non-equilibrium phenomena that have only been discussed on the basis of temperature, this study is expected to contribute to the actual expansion of scientific/engineering applications.

16.
Sci Rep ; 10(1): 346, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941987

ABSTRACT

Theoretical advances in science are inherently time-consuming to realise in engineering, since their practical application is hindered by the inability to follow the theoretical essence. Herein, we propose a new method to freely control the time, cost, and process variables in the fabrication of a hybrid featuring Au nanoparticles on a pre-formed SnO2 nanostructure. The above advantages, which were divided into six categories, are proven to be superior to those achieved elsewhere, and the obtained results are found to be applicable to the synthesis and functionalisation of other nanostructures. Furthermore, the reduction of the time-gap between science and engineering is expected to promote the practical applications of numerous scientific theories.

17.
Sci Rep ; 10(1): 4093, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32139781

ABSTRACT

Breakthrough process technologies have been introduced that can increase the chemical sensitivity of an interface at which reactions occur without significantly altering the physico-chemical properties of the material. Such an interfacial treatment method is based on amorphous-carbon as a base so that fluids can be deposited, and the desired thickness and quality of the deposition can be ensured irrespective of the interface state of the material. In addition, side effects such as diffusion and decreasing strength at the interface can be avoided. This is simpler than existing vacuum-based deposition technology and it has an unmatched industrial advantage in terms of economics, speed, accuracy, reliability, accessibility, and convenience. In particular, this amorphous-carbon interface treatment technology has been demonstrated to improve gas-sensing characteristics of NO2 at room temperature.

18.
Emerg Microbes Infect ; 8(1): 946-958, 2019.
Article in English | MEDLINE | ID: mdl-31237478

ABSTRACT

Scrub typhus is an acute febrile disease caused by Orientia tsutsugamushi infection. Despite the wide range of approaches explored during the last seventy years, an effective prophylactic vaccine is not yet available. Here, we developed a novel recombinant antigen derived from conserved regions of 56 kDa type-specific antigen (TSA56), a major outer membrane protein responsible for genetic heterogeneity and antigenicity, and evaluated it as a protective vaccine antigen. Our findings demonstrate that immunization with conserved blocks of TSA56 (cTSA56) not only provides protective immunity against lethal challenges with the homologous genotype, but also confers significantly better protection against heterologous genotypes than TSA56. Adoptive transfer of CD4+ or CD8+ T cells from immunized mice provided significantly enhanced protection against lethal challenge, whereas immune B cells failed to do so, indicating that cellular immunity against the conserved epitopes plays a protective role. Moreover, immunization with a 10-mer peptide mixture, screened from CD8+ T cell epitopes within the conserved region of TSA56, provided enhanced protection against lethal challenge with O. tsutsugamushi. Therefore, this novel recombinant antigen is a promising candidate for scrub typhus vaccine against a wide range of O. tsutsugamushi genotypes.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Orientia tsutsugamushi/immunology , Scrub Typhus/prevention & control , Animals , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/administration & dosage , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , CD8-Positive T-Lymphocytes/immunology , Female , Genotype , Humans , Immunization , Mice , Mice, Inbred BALB C , Orientia tsutsugamushi/classification , Orientia tsutsugamushi/genetics , Scrub Typhus/immunology , Scrub Typhus/microbiology
19.
Sci Rep ; 9(1): 8129, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31148583

ABSTRACT

The use of conventional doping methods requires consideration of not only the energy connection with the base material but also the limits of the type and doping range of the dopant. The scope of the physico-chemical change must be determined from the properties of the base material, and when this limit is exceeded, a large energy barrier must be formed between the base material and the dopant as in a heterojunction. Thus, starting from a different viewpoint, we introduce a so-called metallization of surface reduction method, which easily overcomes the disadvantages of existing methods while having the effect of doping the base material. Such new synthetic techniques enable sequential energy arrangements-gradients from the surface to the centre of the material-so that free energy transfer effects can be obtained as per the energies in the semiconducting band, eliminating the energy discontinuity of the heterojunction.

20.
ACS Omega ; 4(7): 11824-11831, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460291

ABSTRACT

A simple yet powerful flame chemical vapor deposition technique is proposed that allows free control of the surface morphology, microstructure, and composition of existing materials with regard to various functionalities within a short process time (in seconds) at room temperature and atmospheric pressure as per the requirement. Since the heat energy is directly transferred to the material surface, the redox periodically converges to the energy dynamic equilibrium depending on the energy injection time; therefore, bidirectional transition between the semiconductor/metal is optionally available. To demonstrate this, a variety of Sn-based particles were created on preformed SnO2 nanowires, and this has been interpreted as a new mechanism for the response and response times of gas-sensing, which are representative indicators of the most surface-sensitive applications and show one-to-one correspondence between theoretical and experimental results. The detailed technologies derived herein are clearly influential in both research and industry.

SELECTION OF CITATIONS
SEARCH DETAIL