Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Phys Rev Lett ; 132(13): 136504, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613298

ABSTRACT

The iron-based superconductor FeSe_{1-x}Te_{x} has recently gained significant attention as a host of two distinct physical phenomena: (i) Majorana zero modes that can serve as potential topologically protected qubits, and (ii) a realization of the orbital-selective Mott transition. In this Letter, we connect these two phenomena and provide new insights into the interplay between strong electronic correlations and nontrivial topology in FeSe_{1-x}Te_{x}. Using linearized quasiparticle self-consistent GW plus dynamical mean-field theory, we show that the topologically protected Dirac surface state has substantial Fe(d_{xy}) character. The proximity to the orbital-selective Mott transition plays a dual role: it facilitates the appearance of the topological surface state by bringing the Dirac cone close to the chemical potential but destroys the Z_{2} topological superconductivity when the system is too close to the orbital-selective Mott phase. We derive a reduced effective Hamiltonian that describes the topological band. Its parameters capture all the chemical trends found in the first principles calculation. Our findings provide a framework for further study of the interplay between strong electronic correlations and nontrivial topology in other iron-based superconductors.

2.
Phys Rev Lett ; 126(20): 206401, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34110184

ABSTRACT

Motivated by the recent discovery of superconductivity in infinite-layer nickelates RE_{1-δ}Sr_{δ}NiO_{2} (RE=Nd, Pr), we study the role of Hund coupling J in a quarter-filled two-orbital Hubbard model, which has been on the periphery of the attention. A region of negative effective Coulomb interaction of this model is revealed to be differentiated from three- and five-orbital models in their typical Hund metal active fillings. We identify distinctive regimes including four different correlated metals, one of which stems from the proximity to a Mott insulator, while the other three, which we call "intermediate" metal, weak Hund metal, and valence-skipping metal, from the effect of J being away from Mottness. Defining criteria characterizing these metals is suggested, establishing the existence of Hund metallicity in two-orbital systems.

3.
Proc Natl Acad Sci U S A ; 111(21): 7564-9, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24821815

ABSTRACT

Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes.


Subject(s)
Light , Models, Chemical , Nanotubes, Carbon/chemistry , Optical Phenomena , Spectrum Analysis/methods , Absorption , Physics
4.
Phys Rev Lett ; 113(2): 026802, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062218

ABSTRACT

Electron supercollimation, in which a wave packet is guided to move undistorted along a selected direction, is a highly desirable property that has yet to be realized experimentally. Disorder in general is expected to inhibit supercollimation. Here we report a counterintuitive phenomenon of electron supercollimation by disorder in graphene and related Dirac fermion materials. We show that one can use one-dimensional disorder potentials to control electron wave packet transport. This is distinct from known systems where an electron wave packet would be further spread by disorder and hindered in the potential fluctuating direction. The predicted phenomenon has significant implications in the understanding and applications of electron transport in Dirac fermion materials.

5.
Nano Lett ; 13(1): 54-8, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23210547

ABSTRACT

The sensitive structural dependence of the optical properties of single-walled carbon nanotubes, which are dominated by excitons and tunable by changing diameter and chirality, makes them excellent candidates for optical devices. Because of strong many-electron interaction effects, the detailed dependence of the optical oscillator strength f(s) of excitons on nanotube diameter d, chiral angle θ, and electronic subband index P (the so-called family behavior), however, has been unclear. In this study, based on results from an extended Hubbard Hamiltonian with parameters derived from ab initio GW plus Bethe-Salpeter equation (GW-BSE) calculations, we have obtained an explicit formula for the family behavior of the oscillator strengths of excitons in semiconducting single-walled carbon nanotubes (SWCNTs), incorporating environmental screening. The formula explains recent measurements well and is expected to be useful in the understanding and design of possible SWCNT optical and optoelectronic devices.

6.
Phys Rev Lett ; 103(19): 197001, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-20365945

ABSTRACT

The origin of magnetic flux noise in superconducting quantum interference devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5x10(17) m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.

7.
J Phys Condens Matter ; 20(23): 235220, 2008 Jun 11.
Article in English | MEDLINE | ID: mdl-21694311

ABSTRACT

Vacancy-induced magnetism in graphene bilayers is investigated using spin-polarized density functional theory calculations. One of two graphene layers has a monovacancy. Two atomic configurations for bilayers are considered with respect to the position of the monovacancy. We find that spin magnetic moments localized at the vacancy site decrease by ∼10% for our two configurations, compared with the graphene monolayer with a monovacancy. The reduction of the spin magnetic moment in the graphene bilayers is attributed to the interlayer charge transfer from the adjacent layer to the layer with the monovacancy, compensating for spin magnetic moments originating from quasilocalized defect states.

8.
Science ; 340(6133): 734-7, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23470728

ABSTRACT

Relativistic quantum mechanics predicts that when the charge of a superheavy atomic nucleus surpasses a certain threshold, the resulting strong Coulomb field causes an unusual atomic collapse state; this state exhibits an electron wave function component that falls toward the nucleus, as well as a positron component that escapes to infinity. In graphene, where charge carriers behave as massless relativistic particles, it has been predicted that highly charged impurities should exhibit resonances corresponding to these atomic collapse states. We have observed the formation of such resonances around artificial nuclei (clusters of charged calcium dimers) fabricated on gated graphene devices via atomic manipulation with a scanning tunneling microscope. The energy and spatial dependence of the atomic collapse state measured with scanning tunneling microscopy revealed unexpected behavior when occupied by electrons.

9.
Phys Rev Lett ; 98(8): 087205, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17359126

ABSTRACT

We conducted micromagnetic numerical studies on the strong radiation of spin waves (SWs) produced by the magnetic-field-induced reversal of a magnetic vortex core, as well as their wave behaviors in magnetic nanowires. It was found that the radial SWs can be emitted intensively from a vortex core in a circular dot by virtue of localized large torques employed at the core, and then can be injected into a long nanowire via their contact. These SWs exhibit wave characteristics such as propagation, reflection, transmission, interference, and dispersion. These results offer a preview of the generation, delivery, and manipulation of SWs in magnetic elements, which are applicable to information-signal processing in potential SW devices.

SELECTION OF CITATIONS
SEARCH DETAIL