Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(11): 2555-2569.e5, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37967531

ABSTRACT

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.


Subject(s)
Endothelial Progenitor Cells , Tumor Suppressor Proteins , Animals , Humans , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tumor-Associated Macrophages/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Protein C Receptor , Mechanistic Target of Rapamycin Complex 1 , Neovascularization, Pathologic , Mammals
2.
Immunity ; 55(7): 1200-1215.e6, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35637103

ABSTRACT

Soon after activation, CD4+ T cells are segregated into BCL6+ follicular helper (Tfh) and BCL6- effector (Teff) T cells. Here, we explored how these subsets are maintained during chronic antigen stimulation using the mouse chronic LCMV infection model. Using single cell-transcriptomic and epigenomic analyses, we identified a population of PD-1+ TCF-1+ CD4+ T cells with memory-like features. TCR clonal tracing and adoptive transfer experiments demonstrated that these cells have self-renewal capacity and continue to give rise to both Teff and Tfh cells, thus functioning as progenitor cells. Conditional deletion experiments showed Bcl6-dependent development of these progenitors, which were essential for sustaining antigen-specific CD4+ T cell responses to chronic infection. An analogous CD4+ T cell population developed in draining lymph nodes in response to tumors. Our study reveals the heterogeneity and plasticity of CD4+ T cells during persistent antigen exposure and highlights their population dynamics through a stable, bipotent intermediate state.


Subject(s)
Antigens , T-Lymphocytes, Helper-Inducer , Adoptive Transfer , Animals , Cell Differentiation , Mice , Proto-Oncogene Proteins c-bcl-6/genetics , Stem Cells
3.
Immunity ; 54(5): 976-987.e7, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979589

ABSTRACT

Aerobic glycolysis-the Warburg effect-converts glucose to lactate via the enzyme lactate dehydrogenase A (LDHA) and is a metabolic feature of effector T cells. Cells generate ATP through various mechanisms and Warburg metabolism is comparatively an energy-inefficient glucose catabolism pathway. Here, we examined the effect of ATP generated via aerobic glycolysis in antigen-driven T cell responses. Cd4CreLdhafl/fl mice were resistant to Th17-cell-mediated experimental autoimmune encephalomyelitis and exhibited defective T cell activation, migration, proliferation, and differentiation. LDHA deficiency crippled cellular redox balance and inhibited ATP production, diminishing PI3K-dependent activation of Akt kinase and thereby phosphorylation-mediated inhibition of Foxo1, a transcriptional repressor of T cell activation programs. Th17-cell-specific expression of an Akt-insensitive Foxo1 recapitulated the defects seen in Cd4CreLdhafl/fl mice. Induction of LDHA required PI3K signaling and LDHA deficiency impaired PI3K-catalyzed PIP3 generation. Thus, Warburg metabolism augments glycolytic ATP production, fueling a PI3K-centered positive feedback regulatory circuit that drives effector T cell responses.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Signal Transduction/physiology , Th17 Cells/metabolism , Animals , Cell Differentiation/physiology , Cell Line , Cell Proliferation/physiology , Female , Gene Expression Regulation, Neoplastic/physiology , Glucose/metabolism , Glycogen Storage Disease/metabolism , Glycolysis/physiology , L-Lactate Dehydrogenase/deficiency , L-Lactate Dehydrogenase/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
4.
Nature ; 619(7970): 616-623, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380769

ABSTRACT

In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.


Subject(s)
Cell Competition , Cellular Reprogramming Techniques , Immunity, Innate , Neoplasms , Tumor-Associated Macrophages , Animals , Mice , Amino Acids/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Competition/genetics , Cell Competition/immunology , Dietary Proteins/pharmacology , Disease Models, Animal , GTP Phosphohydrolases/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
5.
Nature ; 605(7908): 139-145, 2022 05.
Article in English | MEDLINE | ID: mdl-35444279

ABSTRACT

Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αß T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.


Subject(s)
Immunity, Innate , Interleukin-15 , Neoplasms , Animals , Cell Differentiation , Mice , Neoplasms/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/metabolism
6.
Nat Immunol ; 15(9): 884-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25029552

ABSTRACT

Although the transcription factor c-Myc is essential for the establishment of a metabolically active and proliferative state in T cells after priming, its expression is transient. It remains unknown how T cell activation is maintained after c-Myc expression is downregulated. Here we identified AP4 as the transcription factor that was induced by c-Myc and sustained activation of antigen-specific CD8+ T cells. Despite normal priming, AP4-deficient CD8+ T cells failed to continue transcription of a broad range of c-Myc-dependent targets. Mice lacking AP4 specifically in CD8+ T cells showed enhanced susceptibility to infection with West Nile virus. Genome-wide analysis suggested that many activation-induced genes encoding molecules involved in metabolism were shared targets of c-Myc and AP4. Thus, AP4 maintains c-Myc-initiated cellular activation programs in CD8+ T cells to control microbial infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Proto-Oncogene Proteins c-myc/immunology , Transcription Factors/immunology , Animals , Mice , West Nile Fever/immunology
7.
Nature ; 588(7839): 620-624, 2020 12.
Article in English | MEDLINE | ID: mdl-33361791

ABSTRACT

The range of applications for additive manufacturing is expanding quickly, including mass production of athletic footwear parts1, dental ceramics2 and aerospace components3 as well as fabrication of microfluidics4, medical devices5, and artificial organs6. The light-induced additive manufacturing techniques7 used are particularly successful owing to their high spatial and temporal control, but such techniques still share the common motifs of pointwise or layered generation, as do stereolithography8, laser powder bed fusion9, and continuous liquid interface production10 and its successors11,12. Volumetric 3D printing13-20 is the next step onward from sequential additive manufacturing methods. Here we introduce xolography, a dual colour technique using photoswitchable photoinitiators to induce local polymerization inside a confined monomer volume upon linear excitation by intersecting light beams of different wavelengths. We demonstrate this concept with a volumetric printer designed to generate three-dimensional objects with complex structural features as well as mechanical and optical functions. Compared to state-of-the-art volumetric printing methods, our technique has a resolution about ten times higher than computed axial lithography without feedback optimization, and a volume generation rate four to five orders of magnitude higher than two-photon photopolymerization. We expect this technology to transform rapid volumetric production for objects at the nanoscopic to macroscopic length scales.

8.
Nature ; 587(7832): 121-125, 2020 11.
Article in English | MEDLINE | ID: mdl-33087933

ABSTRACT

Cancer arises from malignant cells that exist in dynamic multilevel interactions with the host tissue. Cancer therapies aiming to directly kill cancer cells, including oncogene-targeted therapy and immune-checkpoint therapy that revives tumour-reactive cytotoxic T lymphocytes, are effective in some patients1,2, but acquired resistance frequently develops3,4. An alternative therapeutic strategy aims to rectify the host tissue pathology, including abnormalities in the vasculature that foster cancer progression5,6; however, neutralization of proangiogenic factors such as vascular endothelial growth factor A (VEGFA) has had limited clinical benefits7,8. Here, following the finding that transforming growth factor-ß (TGF-ß) suppresses T helper 2 (TH2)-cell-mediated cancer immunity9, we show that blocking TGF-ß signalling in CD4+ T cells remodels the tumour microenvironment and restrains cancer progression. In a mouse model of breast cancer resistant to immune-checkpoint or anti-VEGF therapies10,11, inducible genetic deletion of the TGF-ß receptor II (TGFBR2) in CD4+ T cells suppressed tumour growth. For pharmacological blockade, we engineered a bispecific receptor decoy by attaching the TGF-ß-neutralizing TGFBR2 extracellular domain to ibalizumab, a non-immunosuppressive CD4 antibody12,13, and named it CD4 TGF-ß Trap (4T-Trap). Compared with a non-targeted TGF-ß-Trap, 4T-Trap selectively inhibited TH cell TGF-ß signalling in tumour-draining lymph nodes, causing reorganization of tumour vasculature and cancer cell death, a process dependent on the TH2 cytokine interleukin-4 (IL-4). Notably, the 4T-Trap-induced tumour tissue hypoxia led to increased VEGFA expression. VEGF inhibition enhanced the starvation-triggered cancer cell death and amplified the antitumour effect of 4T-Trap. Thus, targeted TGF-ß signalling blockade in helper T cells elicits an effective tissue-level cancer defence response that can provide a basis for therapies directed towards the cancer environment.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy , Signal Transduction/drug effects , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/blood supply , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Hypoxia , Cell Line, Tumor , Female , HEK293 Cells , Humans , Interleukin-4/immunology , Lymph Nodes/cytology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Male , Mice , Receptor, Transforming Growth Factor-beta Type II/chemistry , Receptor, Transforming Growth Factor-beta Type II/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transforming Growth Factor beta/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
9.
Nature ; 587(7832): 115-120, 2020 11.
Article in English | MEDLINE | ID: mdl-33087928

ABSTRACT

The immune system uses two distinct defence strategies against infections: microbe-directed pathogen destruction characterized by type 1 immunity1, and host-directed pathogen containment exemplified by type 2 immunity in induction of tissue repair2. Similar to infectious diseases, cancer progresses with self-propagating cancer cells inflicting host-tissue damage. The immunological mechanisms of cancer cell destruction are well defined3-5, but whether immune-mediated cancer cell containment can be induced remains poorly understood. Here we show that depletion of transforming growth factor-ß receptor 2 (TGFBR2) in CD4+ T cells, but not CD8+ T cells, halts cancer progression as a result of tissue healing and remodelling of the blood vasculature, causing cancer cell hypoxia and death in distant avascular regions. Notably, the host-directed protective response is dependent on the T helper 2 cytokine interleukin-4 (IL-4), but not the T helper 1 cytokine interferon-γ (IFN-γ). Thus, type 2 immunity can be mobilized as an effective tissue-level defence mechanism against cancer.


Subject(s)
Neoplasms/immunology , Neoplasms/pathology , Signal Transduction/immunology , Th2 Cells/immunology , Transforming Growth Factor beta/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Death/drug effects , Cell Hypoxia , Cell Line , Disease Progression , Female , Gene Expression Regulation/immunology , Humans , Interferon-gamma/immunology , Interleukin-4/immunology , Male , Mice , Mice, Inbred C57BL , Neoplasms/blood supply , Neoplasms/metabolism , Receptor, Transforming Growth Factor-beta Type II/deficiency , Signal Transduction/drug effects , Stromal Cells/cytology , Stromal Cells/immunology , Th2 Cells/metabolism , Transforming Growth Factor beta/antagonists & inhibitors
10.
EMBO J ; 40(4): e105450, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33347625

ABSTRACT

Wnt/ß-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/ß-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/ß-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of ß-catenin to stabilize ß-catenin-TCF4 complex and facilitate the transactivation of Wnt/ß-catenin signaling targets. Accordingly, activated ß-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/ß-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/secondary , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Proteoglycans/metabolism , beta Catenin/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proteoglycans/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , beta Catenin/genetics
11.
Immunity ; 45(3): 570-582, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27566940

ABSTRACT

B cells diversify and affinity mature their antigen receptor repertoire in germinal centers (GCs). GC B cells receive help signals during transient interaction with T cells, yet it remains unknown how these transient T-B interactions in the light zone sustain the subsequent proliferative program of selected B cells that occurs in the anatomically distant dark zone. Here, we show that the transcription factor AP4 was required for sustained GC B cell proliferation and subsequent establishment of a diverse and protective antibody repertoire. AP4 was induced by c-MYC during the T-B interactions, was maintained by T-cell-derived interleukin-21 (IL-21), and promoted repeated rounds of divisions of selected GC B cells. B-cell-specific deletion of AP4 resulted in reduced GC sizes and reduced somatic hypermutation coupled with a failure to control chronic viral infection. These results indicate that AP4 integrates T-cell-mediated selection and sustained expansion of GC B cells for humoral immunity.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Transcription Factors/immunology , Virus Diseases/immunology , Animals , Cell Proliferation/physiology , Female , Interleukins/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology
12.
Article in English | MEDLINE | ID: mdl-38836923

ABSTRACT

Forty percent of diabetics will develop chronic kidney disease (CKD) in their lifetimes. However, as many as 50% of these CKD cases may go undiagnosed. We developed screening recommendations stratified by age and previous test history for individuals with diagnosed diabetes and unknown proteinuria status by race and gender groups. To do this, we used a Partially Observed Markov Decision Process (POMDP) to identify whether a patient should be screened at every three-month interval from ages 30-85. Model inputs were drawn from nationally-representative datasets, the medical literature, and a microsimulation that integrates this information into group-specific disease progression rates. We implement the POMDP solution policy in the microsimulation to understand how this policy may impact health outcomes and generate an easily-implementable, non-belief-based approximate policy for easier clinical interpretability. We found that the status quo policy, which is to screen annually for all ages and races, is suboptimal for maximizing expected discounted future net monetary benefits (NMB). The POMDP policy suggests more frequent screening after age 40 in all race and gender groups, with screenings 2-4 times a year for ages 61-70. Black individuals are recommended for screening more frequently than their White counterparts. This policy would increase NMB from the status quo policy between $1,000 to  $8,000 per diabetic patient at a willingness-to-pay of $150,000 per quality-adjusted life year (QALY).

13.
BMC Pulm Med ; 24(1): 310, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956567

ABSTRACT

BACKGROUND: Myasthenia gravis (MG) is the most common paraneoplastic disorder associated with thymic neoplasms. MG can develop after thymectomy, and this condition is referred to post-thymectomy myasthenia gravis (PTMG). Diffuse panbronchiolitis (DPB), is a rare form of bronchiolitis and is largely restricted to East Asia, has been reported in association with thymic neoplasms. Only three cases of combined MG and DPB have been reported in the literature. CASE PRESENTATION: A 45-year-old Taiwanese woman presented to our hospital with productive cough, rhinorrhea, anosmia, ear fullness, shortness of breath, and weight loss. She had a history of thymoma, and she underwent thymectomy with adjuvant radiotherapy 7 years ago. Chest computed tomography scan revealed diffuse bronchitis and bronchiolitis. DPB was confirmed after video-assisted thoracoscopic surgery lung biopsy, and repeated sputum cultures grew Pseudomonas aeruginosa. She has been on long-term oral azithromycin therapy thereafter. Intravenous antipseudomonal antibiotics, inhaled amikacin, as well as oral levofloxacin were administered. Three months after DPB diagnosis, she developed ptosis, muscle weakness, and hypercapnia requiring the use of noninvasive positive pressure ventilation. MG was diagnosed based on the acetylcholine receptor antibody and repetitive stimulation test results. Her muscle weakness gradually improved after pyridostigmine and corticosteroid therapies. Oral corticosteroids could be tapered off ten months after the diagnosis of MG. She is currently maintained on azithromycin, pyridostigmine, and inhaled amikacin therapies, with intravenous antibiotics administered occasionally during hospitalizations for respiratory infections. CONCLUSIONS: To our knowledge, this might be the first case report of sequential development of DPB followed by PTMG. The coexistence of these two disorders poses a therapeutic challenge for balancing infection control for DPB and immunosuppressant therapies for MG.


Subject(s)
Bronchiolitis , Myasthenia Gravis , Thymectomy , Thymus Neoplasms , Humans , Female , Myasthenia Gravis/etiology , Middle Aged , Bronchiolitis/etiology , Thymectomy/adverse effects , Thymus Neoplasms/surgery , Thymus Neoplasms/complications , Tomography, X-Ray Computed , Haemophilus Infections/etiology , Haemophilus Infections/diagnosis , Thymoma/surgery , Anti-Bacterial Agents/therapeutic use , Taiwan
14.
Blood ; 138(24): 2526-2538, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34283887

ABSTRACT

The proliferative burst of B lymphocytes is essential for antigen receptor repertoire diversification during the development and selective expansion of antigen-specific clones during immune responses. High proliferative activity inevitably promotes oncogenesis, the risk of which is further elevated in B lymphocytes by endogenous gene rearrangement and somatic mutations. However, B-cell-derived cancers are rare, perhaps owing to putative intrinsic tumor-suppressive mechanisms. We show that c-MYC facilitates B-cell proliferation as a protumorigenic driver and unexpectedly coengages counteracting tumor suppression through its downstream factor TFAP4. TFAP4 is mutated in human lymphoid malignancies, particularly in >10% of Burkitt lymphomas, and reduced TFAP4 expression was associated with poor survival of patients with MYC-high B-cell acute lymphoblastic leukemia. In mice, insufficient TFAP4 expression accelerated c-MYC-driven transformation of B cells. Mechanistically, c-MYC suppresses the stemness of developing B cells by inducing TFAP4 and restricting self-renewal of proliferating B cells. Thus, the pursuant transcription factor cascade functions as a tumor suppressor module that safeguards against the transformation of developing B cells.


Subject(s)
B-Lymphocytes/pathology , Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics , Animals , B-Lymphocytes/metabolism , Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Leukemia, Lymphoid/genetics , Leukemia, Lymphoid/pathology , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Mice, Inbred C57BL , Mutation , Tumor Cells, Cultured
15.
J Org Chem ; 88(9): 5813-5826, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37026362

ABSTRACT

This paper reports the kinetic resolution of racemic secondary alcohols (O-nucleophiles) via stereoselective intramolecular allylic substitution. The reaction was enabled by synergistic palladium and chiral phosphoric acid catalysis and produced chiral cis-1,3-disubstituted 1,3-dihydroisobenzofurans with a selective factor of up to 60.9 and a diastereomeric ratio of up to 7.8:1. Asymmetric synthesis of a compound with antihistaminic activity was demonstrated as the application of this methodology.

16.
J Org Chem ; 88(1): 613-625, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36548133

ABSTRACT

The asymmetric induction afforded by a chiral sulfinyl group in a palladium/Brønsted-acid-catalyzed intramolecular allylic amination was investigated. Predictions of the diastereoselectivity for various substrates under assumed total thermodynamic control were obtained from density functional theory (DFT), and the correlation with experimental data demonstrates abrupt changes to kinetic control across the substrate scope. The resulting heterocyclic product was readily converted to valuable isoindoline-1-carboxylic acid esters by a two-step oxidation sequence, providing asymmetric access to a key unnatural α-amino acid scaffold.


Subject(s)
Amino Acids , Carboxylic Acids , Carboxylic Acids/chemistry , Amino Acids/chemistry , Oxidation-Reduction , Amination , Palladium/chemistry , Catalysis
17.
Health Care Manag Sci ; 26(3): 430-446, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37084163

ABSTRACT

Contagious disease pandemics, such as COVID-19, can cause hospitals around the world to delay nonemergent elective surgeries, which results in a large surgery backlog. To develop an operational solution for providing patients timely surgical care with limited health care resources, this study proposes a stochastic control process-based method that helps hospitals make operational recovery plans to clear their surgery backlog and restore surgical activity safely. The elective surgery backlog recovery process is modeled by a general discrete-time queueing network system, which is formulated by a Markov decision process. A scheduling optimization algorithm based on the piecewise decaying [Formula: see text]-greedy reinforcement learning algorithm is proposed to make dynamic daily surgery scheduling plans considering newly arrived patients, waiting time and clinical urgency. The proposed method is tested through a set of simulated dataset, and implemented on an elective surgery backlog that built up in one large general hospital in China after the outbreak of COVID-19. The results show that, compared with the current policy, the proposed method can effectively and rapidly clear the surgery backlog caused by a pandemic while ensuring that all patients receive timely surgical care. These results encourage the wider adoption of the proposed method to manage surgery scheduling during all phases of a public health crisis.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Elective Surgical Procedures , Hospitals
18.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36768840

ABSTRACT

The intention of this Special Issue is to highlight novel approaches and new paradigms for understanding the pathogenesis of hypertrophic cardiomyopathy (HCM) [...].


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology
19.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139184

ABSTRACT

The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced ß-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π-π or cation-π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Peptide Hydrolases/metabolism , Degrons , Endopeptidases/metabolism , ATP-Dependent Proteases/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism
20.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513282

ABSTRACT

Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a bacterial hormone-sensitive lipase (bHSL) of the type IV lipase family. The study revealed that the recombinant EstD04-His(6x) protein exhibited esterase activity and broad substrate specificity, as it was capable of hydrolyzing p-nitrophenyl derivatives with different acyl chain lengths. By using the most favorable substrate p-nitrophenyl butyrate (C4), we defined the optimal temperature and pH value for EstD04 esterase activity as 40 °C and pH 8, respectively, with a catalytic efficiency (kcat/Km) of 6.17 × 103 mM-1 s-1 at 40 °C. EstD04 demonstrated high stability between pH 8 and 10, and thus, it might be capably used as an alkaline esterase in industrial applications. The addition of Mg2+ and NH4+, as well as DMSO, could stimulate EstD04 enzyme activity. Based on bioinformatic motif analyses and tertiary structural simulation, we determined EstD04 to be a typical bHSL protein with highly conserved motifs, including a triad catalytic center (Ser160, Glu253, and His283), two cap regions, hinge sites, and an oxyanion hole, which are important for the type IV enzyme activity. Moreover, the sequence analysis suggested that the two unique discrete cap regions of EstD04 may contribute to its alkali mesophilic nature, allowing EstD04 to exhibit extremely distinct physiological properties from its evolutionarily closest esterase.


Subject(s)
Gastrointestinal Microbiome , Tenebrio , Animals , Esterases/metabolism , Tenebrio/metabolism , Amino Acid Sequence , Pseudomonas/metabolism , Sterol Esterase/metabolism , Bacteria/metabolism , Substrate Specificity , Hydrogen-Ion Concentration , Cloning, Molecular , Enzyme Stability
SELECTION OF CITATIONS
SEARCH DETAIL