Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Infect Dis ; 20(1): 726, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33008333

ABSTRACT

BACKGROUND: Ivermectin is an excellent microfilaricide against Onchocerca volvulus. However, in some regions, long term use of ivermectin has resulted in sub-optimal responses to the treatment. More data to properly document the phenomenon in various contexts of ivermectin mass drug administration (IVM-MDA) is needed. Also, there is a need to accurately monitor a possible repopulation of skin by microfilariae following treatment. Skin snip microscopy is known to have a low sensitivity in individuals with light infections, which can be the case following treatment. This study was designed with two complementary objectives: (i) to assess the susceptibility of O. volvulus microfilariae to ivermectin in two areas undergoing IVM-MDA for different lengths of time, and (ii) to document the repopulation of skin by the O. volvulus microfilariae following treatment, using 3 independent diagnostic techniques. METHOD: Identified microfilaridermic individuals were treated with ivermectin and re-examined after 1, 3, and 6 months using microscopy, actin real-time PCR (actin-qPCR) and O-150 LAMP assays. Susceptibility to ivermectin and trends in detecting reappearance of skin microfilariae were determined using three techniques. Microscopy was used as an imperfect gold standard to determine the performance of actin-qPCR and LAMP. RESULTS: In Bafia with over 20 years of IVM-MDA, 11/51 (21.6%) direct observe treated microfilaridemic participants were still positive for skin microfilariae after 1 month. In Melong, with 10 years of IVM-MDA, 2/29 (6.9%) treated participants were still positive. The microfilarial density reduction per skin biopsy within one month following treatment was significantly lower in participants from Bafia. In both study sites, the molecular techniques detected higher proportions of infected individuals than microscopy at all monitoring time points. LAMP demonstrated the highest levels of sensitivity and real-time PCR was found to have the highest specificity. CONCLUSION: Patterns in skin mirofilariae clearance and repopulation were established. O. volvulus worms from Bafia with higher number of annual MDA displayed a lower clearance and higher repopulation rate after treatment with ivermectin. Molecular assays displayed higher sensitivity in monitoring O. volvulus microfilaridemia within six months following treatment.


Subject(s)
Antiparasitic Agents/therapeutic use , Ivermectin/therapeutic use , Onchocerca volvulus/physiology , Onchocerciasis/drug therapy , Skin/pathology , Adolescent , Animals , Biopsy , Cameroon , Child , Child, Preschool , Female , Humans , Male , Mass Drug Administration , Microscopy , Real-Time Polymerase Chain Reaction , Young Adult
2.
Mol Cell Proteomics ; 15(8): 2554-75, 2016 08.
Article in English | MEDLINE | ID: mdl-27226403

ABSTRACT

Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-ß and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.


Subject(s)
Onchocerca/physiology , Onchocerciasis/parasitology , Proteomics/methods , Protozoan Proteins/metabolism , Animals , Cattle , Disease Models, Animal , Female , Gene Expression Regulation, Developmental , Host-Parasite Interactions , Humans , Male , Onchocerca/metabolism , Onchocerciasis/veterinary , Phylogeny , Protein Interaction Maps
4.
Parasite Epidemiol Control ; 25: e00343, 2024 May.
Article in English | MEDLINE | ID: mdl-38405181

ABSTRACT

Background: Loiasis is an endemic filarial infection in the rainforest zone of West and Central Africa. Repeated annual community-directed treatment with ivermectin (CDTI) delivered for several years to control onchocerciasis has been shown to reduce the prevalence and intensity of Loiasis in some Loa loa-Onchocerca volvulus co-endemic areas. However, the impact of these multiple rounds of CDTI on entomological indicators of loiasis transmission is not known, and was therefore assessed in this study in areas with contrasting histories of CDTI. Methods: The study was conducted in the East, North-west and South-west 1 CDTI project sites of Cameroon. Two communities per CDTI project were selected for fly collection and dissection. Ivermectin treatment coverage was documented in these areas, and this was correlated to Chrysops infection and infective rates. A total of 7029 female Chrysops were collected from 6 communities of the 3 CDTI projects (East, North-west, and South-west 1) and from 2 communities in a non-CDTI district (East). Results: Chrysops biting densities and parous rates were significantly reduced in the North-west and South-west sites post-CDTI, while in the East, biting densities were similar in non-CDTI and CDTI sites, with higher parous rates observed in the non-CDTI site. Infection and infective rates in the East non-CDTI site were 4.4% and 1.8% respectively, as compared to 3.3% and 1.3% in the CDTI site after 10 ivermectin rounds (there were no baseline data for the latter). In the North-west site, significant reductions in Chrysops infection and infective rates from 10.2% and 4.2% respectively, to 3.5% and 1.2 (after 9 rounds of ivermectin treatment), were recorded following CDTI. In the South-west, infection rate significantly increased from 1.74% to 2.8% and infective rate remained statistically unchanged after 14 rounds of CDTI (0.45% - 0.40%). Similar trends in Mean Head L3 were observed except in the East site where this indicator was similar in both CDTI and control sites. Only in the North-west site did monthly transmission potentials decrease significantly. Conclusion: This study demonstrated that the impact of repeated annual treatment with ivermectin for the control of onchocerciasis using community directed delivery approach on the entomological indicators of loiasis varies with bioecological zones. Community directed treatment with ivermectin induced a significant reduction in the entomological indicators of loiasis in the North-West project site which lies in forest savanna area. A non-significant decrease was observed in the East project site and in contrast, a significant increase was observed in the South-West 1 project site which both lies in the rainforest zones.

5.
PLoS Negl Trop Dis ; 13(3): e0007192, 2019 03.
Article in English | MEDLINE | ID: mdl-30849120

ABSTRACT

BACKGROUND: Mapping of lymphatic filariasis (LF) caused by Wuchereria bancrofti largely relies on the detection of circulating antigen using ICT cards. Several studies have recently shown that this test can be cross-reactive with sera of subjects heavily infected with Loa loa and thus mapping results in loiasis endemic areas may be inaccurate. METHODOLOGY/PRINCIPAL FINDINGS: In order to develop an LF mapping strategy for areas with high loiasis prevalence, we collected day blood samples from 5,001 subjects residing in 50 villages that make up 6 health districts throughout Cameroon. Antigen testing using Filarial Test Strip (FTS, a novel platform that uses the same reagents as ICT) revealed an overall positivity rate of 1.1% and L. loa microfilaria (Mf) rates of up to 46%. Among the subjects with 0 to 8,000 Mf/ml in day blood, only 0.4% were FTS positive, while 22.2% of subjects with >8,000 Mf/ml were FTS positive. A Mf density of >8,200 Mf/ml was determined as the cut point at which positive FTS results should be excluded from the analysis. No FTS positive samples were also positive for W. bancrofti antibodies as measured by two different point of care tests that use the Wb123 antigen not found in L. loa. Night blood examination of the FTS positive subjects showed a high prevalence of L. loa Mf with densities up to 12,710 Mf/ml. No W. bancrofti Mf were identified, as confirmed by qPCR. Our results show that high loads of L. loa Mf in day blood are a reliable indicator of FTS positivity, and Wb123 rapid test proved to be relatively specific. CONCLUSIONS/SIGNIFICANCE: Our study provides a simple day blood-based algorithm for LF mapping in loiasis areas. The results indicate that many districts that were formerly classified as endemic for LF in Cameroon are non-endemic and do not require mass drug administration for elimination of LF.


Subject(s)
Elephantiasis, Filarial/epidemiology , Endemic Diseases , Loiasis/epidemiology , Topography, Medical , Wuchereria bancrofti/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/analysis , Cameroon/epidemiology , Child , Cross-Sectional Studies , Diagnostic Tests, Routine/methods , Female , Humans , Immunoassay/methods , Male , Middle Aged , Prevalence , Real-Time Polymerase Chain Reaction , Rural Population , Young Adult
6.
Parasit Vectors ; 11(1): 275, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29716646

ABSTRACT

BACKGROUND: Suitable and scalable in vitro culture conditions for parasite maintenance are needed to foster drug research for loiasis, one of the neglected tropical diseases which has attracted only limited attention over recent years, despite having important public health impacts. The present work aims to develop adequate in vitro culture systems for drug screening against both microfilariae (mf) and infective third-stage larvae (L3) of Loa loa. METHODS: In vitro culture conditions were evaluated by varying three basic culture media: Roswell Park Memorial Institute (RPMI-1640), Dulbecco's modified Eagle's medium (DMEM) and Iscove's modified Dulbecco's medium (IMDM); four sera/proteins: newborn calf serum (NCS), foetal bovine serum (FBS), bovine serum albumin (BSA) and the lipid-enriched BSA (AlbuMax® II, ALB); and co-culture with the Monkey Kidney Epithelial Cell line (LLC-MK2) as a feeder layer. The various culture systems were tested on both mf and L3, using survival (% motile), motility (T90 = mean duration (days) at which at least 90% of parasites were fully active) and moulting rates of L3 as the major criteria. The general linear model regression analysis was performed to assess the contribution of each variable on the viability of Loa loa L3 and microfilarie. All statistical tests were performed at 95% confidence interval. RESULTS: Of the three different media tested, DMEM and IMDM were the most suitable sustaining the maintenance of both L. loa L3 and mf. IMDM alone could sustain L3 for more than 5 days (T90 = 6.5 ± 1.1 day). Serum supplements and LLC-MK2 co-cultures significantly improved the survival of parasites in DMEM and IMDM. In co-cultures with LLC-MK2 cells, L. loa mf were maintained in each of the three basic media (T90 of 16.4-19.5 days) without any serum supplement. The most effective culture systems promoting significant moulting rate of L3 into L4 (at least 25%) with substantial maintenance time were: DMEM + BSA, DMEM + NCS, DMEM-AlbuMax®II, DMEM + FBS all in co-culture with LLC-MK2, and IMDM + BSA (1.5%), DMEM + FBS (10%) and DMEM + NCS (5%) without feeder cells. DMEM + 1% BSA in co-culture scored the highest moulting rate of 57 of 81 (70.37%). The factors that promoted L. loa mf viability included feeder cells (ß = 0.490), both IMDM (ß = 0.256) and DMEM (ß = 0.198) media and the protein supplements NCS (ß = 0.052) and FBS (ß = 0.022); while for L. loa L3, in addition to feeder cells (ß = 0.259) and both IMDM (ß = 0.401) and DMEM (ß = 0.385) media, the protein supplements BSA (ß = 0.029) were found important in maintaining the worm motility. CONCLUSIONS: The findings from this work display a range of culture requirements for the maintenance of Loa loa stages, which are suitable for developing an effective platform for drug screening.


Subject(s)
Loa/growth & development , Microbiological Techniques/methods , Microfilariae/growth & development , Parasitology/methods , Animals , Culture Media/chemistry , Drug Evaluation, Preclinical/methods , Epithelial Cells/physiology , Feeder Cells/physiology , Filaricides/isolation & purification , Haplorhini , Larva/growth & development , Larva/physiology , Loa/physiology , Locomotion , Microfilariae/physiology , Molting , Survival Analysis
7.
PLoS Negl Trop Dis ; 12(1): e0006126, 2018 01.
Article in English | MEDLINE | ID: mdl-29324858

ABSTRACT

BACKGROUND: Podoconiosis is a non-filarial elephantiasis, which causes massive swelling of the lower legs. It was identified as a neglected tropical disease by WHO in 2011. Understanding of the geographical distribution of the disease is incomplete. As part of a global mapping of podoconiosis, this study was conducted in Cameroon to map the distribution of the disease. This mapping work will help to generate data on the geographical distribution of podoconiosis in Cameroon and contribute to the global atlas of podoconiosis. METHODS: We used a multi-stage sampling design with stratification of the country by environmental risk of podoconiosis. We sampled 76 villages from 40 health districts from the ten Regions of Cameroon. All individuals of 15-years old or older in the village were surveyed house-to-house and screened for lymphedema. A clinical algorithm was used to reliably diagnose podoconiosis, excluding filarial-associated lymphedema. Individuals with lymphoedema were tested for circulating Wuchereria bancrofti antigen and specific IgG4 using the Alere Filariasis Test Strips (FTS) test and the Standard Diagnostics (SD) BIOLINE lymphatic filariasis IgG4 test (Wb123) respectively, in addition to thick blood films. Presence of DNA specific to W. bancrofti was checked on night blood using a qPCR technique. PRINCIPAL FINDINGS: Overall, 10,178 individuals from 4,603 households participated in the study. In total, 83 individuals with lymphedema were identified. Of the 83 individuals with lymphedema, two were found to be FTS positive and all were negative using the Wb123 test. No microfilaria of W. bancrofti were found in the night blood of any individual with clinical lymphedema. None were found to be positive for W. bancrofti using qPCR. Of the two FTS positive cases, one was positive for Mansonella perstans DNA, while the other harbored Loa loa microfilaria. Overall, 52 people with podoconiosis were identified after applying the clinical algorithm. The overall prevalence of podoconiosis was found to be 0.5% (95% [confidence interval] CI; 0.4-0.7). At least one case of podoconiosis was found in every region of Cameroon except the two surveyed villages in Adamawa. Of the 40 health districts surveyed, 17 districts had no cases of podoconiosis; in 15 districts, mean prevalence was between 0.2% and 1.0%; and in the remaining eight, mean prevalence was between 1.2% and 2.7%. CONCLUSIONS: Our investigation has demonstrated low prevalence but almost nationwide distribution of podoconiosis in Cameroon. Designing a podoconiosis control program is a vital next step. A health system response to the burden of podoconiosis is important, through case surveillance and morbidity management services.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Helminth/immunology , Elephantiasis/epidemiology , Lymphedema/epidemiology , Neglected Diseases/epidemiology , Animals , Antibodies, Protozoan/immunology , Cameroon/epidemiology , Elephantiasis/diagnosis , Geography , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lymphedema/diagnosis , Lymphedema/parasitology , Mansonella/isolation & purification , Neglected Diseases/diagnosis , Wuchereria bancrofti/isolation & purification
8.
PLoS Negl Trop Dis ; 9(11): e0004184, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26544042

ABSTRACT

BACKGROUND: Immunochromatographic card test (ICT) is a tool to map the distribution of Wuchereria bancrofti. In areas highly endemic for loaisis in DRC and Cameroon, a relationship has been envisaged between high L. loa microfilaria (Mf) loads and ICT positivity. However, similar associations have not been demonstrated from other areas with contrasting levels of L. loa endemicity. This study investigated the cross-reactivity of ICT when mapping lymphatic filariasis (LF) in areas with contrasting endemicity levels of loiasis and mansonellosis in Cameroon. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study to assess the prevalence and intensity of W. bancrofti, L. loa and M. perstans was carried out in 42 villages across three regions (East, North-west and South-west) of the Cameroon rainforest domain. Diurnal blood was collected from participants for the detection of circulating filarial antigen (CFA) by ICT and assessment of Mf using a thick blood smear. Clinical manifestations of LF were also assessed. ICT positives and patients clinically diagnosed with lymphoedema were further subjected to night blood collection for the detection of W. bancrofti Mf. Overall, 2190 individuals took part in the study. Overall, 24 individuals residing in 14 communities were tested positive by ICT, with prevalence rates ranging from 0% in the South-west to 2.1% in the North-west. Lymphoedema were diagnosed in 20 individuals with the majority of cases found in the North-west (11/20), and none of them were tested positive by ICT. No Mf of W. bancrofti were found in the night blood of any individual with a positive ICT result or clinical lymphoedema. Positive ICT results were strongly associated with high L. loa Mf intensity with 21 subjects having more than 8,000 L. loa Mf ml/blood (Odds ratio = 15.4; 95%CI: 6.1-39.0; p < 0.001). Similarly, a strong positive association (Spearman's rho = 0.900; p = 0.037) was observed between the prevalence of L. loa and ICT positivity by area: a rate of 1% or more of positive ICT results was found only in areas with an L. loa Mf prevalence above 15%. In contrast, there was no association between ICT positivity and M. perstans prevalence (Spearman's rho = - 0.200; p = 0.747) and Mf density (Odds ratio = 1.8; 95%CI: 0.8-4.2; p = 0.192). CONCLUSIONS/SIGNIFICANCE: This study has confirmed the strong association between the ICT positivity and L. loa intensity (Mf/ml of blood) at the individual level. Furthermore, the study has demonstrated that ICT positivity is strongly associated with high L. loa prevalence. These results suggest that the main confounding factor for positive ICT test card results are high levels of L. loa. The findings may indicate that W. bancrofti is much less prevalent in the Central African region where L. loa is highly endemic than previously assumed and accurate re-mapping of the region would be very useful for shrinking of the map of LF distribution.


Subject(s)
Chromatography, Affinity/methods , Cross Reactions , Elephantiasis, Filarial/diagnosis , Elephantiasis, Filarial/epidemiology , Loiasis/epidemiology , Mansonelliasis/epidemiology , Wuchereria bancrofti/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antigens, Helminth/blood , Cameroon/epidemiology , Child , Cross-Sectional Studies , Female , Humans , Loa/isolation & purification , Male , Middle Aged , Parasite Load , Rural Population , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL