Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470399

ABSTRACT

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Subject(s)
Energy Metabolism/physiology , Exercise/physiology , Aged , Biomarkers/metabolism , Female , Humans , Insulin/metabolism , Insulin Resistance , Leukocytes, Mononuclear/metabolism , Longitudinal Studies , Male , Metabolome , Middle Aged , Oxygen/metabolism , Oxygen Consumption , Proteome , Transcriptome
2.
Clin J Sport Med ; 32(2): 103-107, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34173780

ABSTRACT

OBJECTIVE: The risk of myocardial damage after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been controversial. The purpose of this study is to report the incidence of abnormal cardiovascular findings in National Collegiate Athletic Association (NCAA) Division I student-athletes with a history of SARS-CoV-2 infection. DESIGN: This is a case series of student-athletes with SARS-CoV-2 infection and their subsequent cardiac work-up, including troponin level, electrocardiogram, and echocardiogram. Additional testing was ordered as clinically indicated. SETTING: This study was conducted at a single NCAA Division I institution. PARTICIPANTS: Student-athletes were included if they tested positive for SARS-CoV-2 by PCR or antibody testing [immunoglobulin G (IgG)] from April 15, 2020 to October 31, 2020. INTERVENTION: Cardiac testing was conducted as part of postinfection screening. MAIN OUTCOME MEASURES: This study was designed to quantify abnormal cardiovascular screening results and cardiac diagnoses after SARS-CoV-2 infection in Division I collegiate athletes. RESULTS: Fifty-five student-athletes tested positive for SARS-CoV-2. Of these, 14 (26%) had a positive IgG and 41 (74%) had a positive PCR test. Eight abnormal cardiovascular screening evaluations necessitated further testing including cardiac magnetic resonance imaging (cMRI). Two athletes received new cardiac diagnoses, one probable early cardiomyopathy and one pericarditis, whereas the remaining 6 had normal cMRIs. CONCLUSIONS: These data support recent publications which recommend the de-escalation of cardiovascular testing such as cardiac MRI or echocardiogram for athletes who have recovered from asymptomatic or mildly symptomatic SARS-CoV-2 infection. Continued follow-up of these athletes for sequelae of SARS-CoV-2 is critical.


Subject(s)
COVID-19 , Sports , Athletes , COVID-19/diagnosis , Humans , SARS-CoV-2 , Students
3.
JAMA ; 325(6): 542-551, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33560320

ABSTRACT

Importance: Endurance exercise is effective in improving peak oxygen consumption (peak V̇o2) in patients with heart failure with preserved ejection fraction (HFpEF). However, it remains unknown whether differing modes of exercise have different effects. Objective: To determine whether high-intensity interval training, moderate continuous training, and guideline-based advice on physical activity have different effects on change in peak V̇o2 in patients with HFpEF. Design, Setting, and Participants: Randomized clinical trial at 5 sites (Berlin, Leipzig, and Munich, Germany; Antwerp, Belgium; and Trondheim, Norway) from July 2014 to September 2018. From 532 screened patients, 180 sedentary patients with chronic, stable HFpEF were enrolled. Outcomes were analyzed by core laboratories blinded to treatment groups; however, the patients and staff conducting the evaluations were not blinded. Interventions: Patients were randomly assigned (1:1:1; n = 60 per group) to high-intensity interval training (3 × 38 minutes/week), moderate continuous training (5 × 40 minutes/week), or guideline control (1-time advice on physical activity according to guidelines) for 12 months (3 months in clinic followed by 9 months telemedically supervised home-based exercise). Main Outcomes and Measures: Primary end point was change in peak V̇o2 after 3 months, with the minimal clinically important difference set at 2.5 mL/kg/min. Secondary end points included changes in metrics of cardiorespiratory fitness, diastolic function, and natriuretic peptides after 3 and 12 months. Results: Among 180 patients who were randomized (mean age, 70 years; 120 women [67%]), 166 (92%) and 154 (86%) completed evaluation at 3 and 12 months, respectively. Change in peak V̇o2 over 3 months for high-intensity interval training vs guideline control was 1.1 vs -0.6 mL/kg/min (difference, 1.5 [95% CI, 0.4 to 2.7]); for moderate continuous training vs guideline control, 1.6 vs -0.6 mL/kg/min (difference, 2.0 [95% CI, 0.9 to 3.1]); and for high-intensity interval training vs moderate continuous training, 1.1 vs 1.6 mL/kg/min (difference, -0.4 [95% CI, -1.4 to 0.6]). No comparisons were statistically significant after 12 months. There were no significant changes in diastolic function or natriuretic peptides. Acute coronary syndrome was recorded in 4 high-intensity interval training patients (7%), 3 moderate continuous training patients (5%), and 5 guideline control patients (8%). Conclusions and Relevance: Among patients with HFpEF, there was no statistically significant difference in change in peak V̇o2 at 3 months between those assigned to high-intensity interval vs moderate continuous training, and neither group met the prespecified minimal clinically important difference compared with the guideline control. These findings do not support either high-intensity interval training or moderate continuous training compared with guideline-based physical activity for patients with HFpEF. Trial Registration: ClinicalTrials.gov Identifier: NCT02078947.


Subject(s)
Exercise Therapy/methods , Exercise , Heart Failure/metabolism , High-Intensity Interval Training , Oxygen Consumption , Aged , Evidence-Based Medicine , Exercise Tolerance , Female , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Male , Practice Guidelines as Topic , Stroke Volume
5.
Int J Sports Med ; 41(1): 27-35, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31791086

ABSTRACT

Several athletic programs incorporate echocardiography during pre-participation screening of American Style Football (ASF) players with great variability in reported echocardiographic values. Pre-participation screening was performed in National Collegiate Athletic Association Division I ASF players from 2008 to 2016 at the Division of Sports Cardiology. The echocardiographic protocol focused on left ventricular (LV) mass, mass-to-volume ratio, sphericity, ejection fraction, and longitudinal Lagrangian strain. LV mass was calculated using the area-length method in end-diastole and end-systole. A total of two hundred and thirty players were included (18±1 years, 57% were Caucasian, body mass index 29±4 kg/m2) after four players (2%) were excluded for pathological findings. Although there was no difference in indexed LV mass by race (Caucasian 78±11 vs. African American 81±10 g/m2, p=0.089) or sphericity (Caucasian 1.81±0.13 vs. African American 1.78±0.14, p=0.130), the mass-to-volume ratio was higher in African Americans (0.91±0.09 vs. 0.83±0.08, p<0.001). No race-specific differences were noted in LV longitudinal Lagrangian strain. Player position appeared to have a limited role in defining LV remodeling. In conclusion, significant echocardiographic differences were observed in mass-to-volume ratio between African American and Caucasian players. These demographics should be considered as part of pre-participation screening.


Subject(s)
Football/physiology , Heart Ventricles/diagnostic imaging , Ventricular Remodeling/physiology , Adolescent , Black or African American , Body Composition/physiology , Echocardiography , Heart Ventricles/anatomy & histology , Humans , Male , Race Factors , Retrospective Studies , United States , White People , Young Adult
6.
J Card Fail ; 25(12): 961-968, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31454685

ABSTRACT

BACKGROUND: An impaired cardiac output response to exercise is a hallmark of chronic heart failure (HF). We determined the extent to which impedance cardiography (ICG) during exercise in combination with cardiopulmonary exercise test (CPX) responses reclassified risk for adverse events in patients with HF. METHODS AND RESULTS: CPX and ICG were performed in 1236 consecutive patients (48±15 years) evaluated for HF. Clinical, ICG and CPX variables were acquired at baseline and subjects were followed for the composite outcome of cardiac-related death, hospitalization for worsening HF, cardiac transplantation, and left ventricular assist device implantation. Cox proportional hazards analyses including clinical, noninvasive hemodynamic, and CPX variables were performed to determine their association with the composite endpoint. Net reclassification improvement (NRI) was calculated to quantify the impact of adding hemodynamic responses to a model including established CPX risk markers on reclassifying risk. There were 422 events. Among CPX variables, peak VO2 and indices of ventilatory inefficiency (VE/VCO2 slope, oxygen uptake efficiency slope) were significant predictors of risk for adverse events. Among hemodynamic variables, change in cardiac index, peak cardiac time interval, and peak left cardiac work index were the strongest predictors of risk. Having 5 impaired CPX and ICG responses to exercise yielded a sevenfold higher risk for adverse events compared with having no abnormal responses. Combining ICG responses to CPX resulted in NRIs ranging between 0.34 and 0.89, attributable to better reclassification of events. CONCLUSION: Cardiac hemodynamics determined by ICG complement established CPX measures in reclassifying risk among patients with HF.


Subject(s)
Cardiography, Impedance/classification , Exercise Test/classification , Exercise Tolerance/physiology , Heart Failure/classification , Heart Failure/physiopathology , Referral and Consultation/classification , Adult , Cardiography, Impedance/methods , Exercise Test/methods , Female , Follow-Up Studies , Heart Failure/diagnosis , Humans , Male , Middle Aged , Risk Factors , Stroke Volume/physiology
7.
Circulation ; 135(9): 839-849, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28082387

ABSTRACT

BACKGROUND: Small studies have suggested that high-intensity interval training (HIIT) is superior to moderate continuous training (MCT) in reversing cardiac remodeling and increasing aerobic capacity in patients with heart failure with reduced ejection fraction. The present multicenter trial compared 12 weeks of supervised interventions of HIIT, MCT, or a recommendation of regular exercise (RRE). METHODS: Two hundred sixty-one patients with left ventricular ejection fraction ≤35% and New York Heart Association class II to III were randomly assigned to HIIT at 90% to 95% of maximal heart rate, MCT at 60% to 70% of maximal heart rate, or RRE. Thereafter, patients were encouraged to continue exercising on their own. Clinical assessments were performed at baseline, after the intervention, and at follow-up after 52 weeks. Primary end point was a between-group comparison of change in left ventricular end-diastolic diameter from baseline to 12 weeks. RESULTS: Groups did not differ in age (median, 60 years), sex (19% women), ischemic pathogenesis (59%), or medication. Change in left ventricular end-diastolic diameter from baseline to 12 weeks was not different between HIIT and MCT (P=0.45); left ventricular end-diastolic diameter changes compared with RRE were -2.8 mm (-5.2 to -0.4 mm; P=0.02) in HIIT and -1.2 mm (-3.6 to 1.2 mm; P=0.34) in MCT. There was also no difference between HIIT and MCT in peak oxygen uptake (P=0.70), but both were superior to RRE. However, none of these changes was maintained at follow-up after 52 weeks. Serious adverse events were not statistically different during supervised intervention or at follow-up at 52 weeks (HIIT, 39%; MCT, 25%; RRE, 34%; P=0.16). Training records showed that 51% of patients exercised below prescribed target during supervised HIIT and 80% above target in MCT. CONCLUSIONS: HIIT was not superior to MCT in changing left ventricular remodeling or aerobic capacity, and its feasibility remains unresolved in patients with heart failure. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00917046.


Subject(s)
Heart Failure/diagnosis , High-Intensity Interval Training , Stroke Volume/physiology , Aged , Echocardiography , Exercise Test , Exercise Tolerance , Female , Follow-Up Studies , Heart Failure/physiopathology , Heart Rate/physiology , Heart Ventricles/diagnostic imaging , Humans , Male , Middle Aged , Quality of Life , Ventricular Remodeling
8.
Curr Opin Cardiol ; 33(2): 217-224, 2018 03.
Article in English | MEDLINE | ID: mdl-29227300

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to highlight recent advances in the field of exercise testing for patients with heart failure. RECENT FINDINGS: The importance of assessment of cardiorespiratory fitness (CRF) and exercise testing in heart failure is highlighted in the consensus recommendation of the American Heart Association. Contemporary studies have validated the independent and incremental strength of CRF metrics in patients with heart failure and coronary artery disease. The use of respiratory gas analysis and imaging or hemodynamics during physical exercise is feasible and results in high prognostic utility across the continuum of heart failure. Understanding how CRF metrics complement existing and novel biomarkers and risk scores is an emerging subject of scientific inquiry. SUMMARY: In the current era of personalized medicine, integrating CRF, imaging and circulating biomarkers will allow us to further develop individualized strategies for improving outcome in patients with heart failure.


Subject(s)
Biomarkers/analysis , Cardiac Imaging Techniques , Exercise Test , Heart Failure/diagnosis , Cardiac Imaging Techniques/methods , Cardiac Imaging Techniques/trends , Cardiorespiratory Fitness , Exercise Test/methods , Exercise Test/trends , Humans
9.
Echocardiography ; 34(8): 1179-1186, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28681553

ABSTRACT

BACKGROUND: Left ventricular (LV) contractile reserve assessed using imaging and cardiopulmonary exercise testing (CPX) has been shown to predict outcome in patients with dilated cardiomyopathy (DCM). Few clinical studies have, however, analyzed the relationship between them. METHODS: A cohort of 75 ambulatory patients with DCM underwent stress treadmill echocardiography with CPX. LV contractile reserve was calculated as absolute change (ΔLVEF=LVEFpeak -LVEFrest ) and percent change (%LVEF=[(LVEFpeak -LVEFrest )/LVEFpeak) ]×100) in LVEF, circumferential and longitudinal strain (LS). Exercise capacity was measured as peak oxygen uptake (peak VO2 ) and ventilatory efficiency as the slope of minute ventilation to CO2 production (VE/VCO2 slope). Values of contractile reserve were compared to matched controls. We also explored which metric of ventricular response (absolute or percent change) was less dependent on baseline LV function. RESULTS: Patients with DCM had a mean age, rest and peak LVEF of 44±10 years, 42±10% and 50±12%, respectively. Among parameters of contractile reserve, peak cardiac output was the strongest parameter associated with peak VO2 (r=.63, P<.001). Along with age, sex, and BMI, it explained more than 70% of the variance in peak VO2 . In contrast, LVEF and LS were only weakly related to peak VO2 . With regard to ventilatory efficiency, the strongest parameter that emerged was right atrial volume index (r=.36, P<.001). Percent change in LVEF was more independent of baseline function than absolute change. CONCLUSION: Echocardiographic contractile reserve and CPX provide complementary information. Percent change in contractile reserve was most independent of baseline function, therefore may be preferred when analyzing the ventricular response to exercise.


Subject(s)
Cardiomyopathy, Dilated/diagnosis , Exercise Test/methods , Exercise Tolerance/physiology , Heart Ventricles/physiopathology , Myocardial Contraction/physiology , Adult , Cardiomyopathy, Dilated/physiopathology , Echocardiography, Stress , Female , Follow-Up Studies , Heart Ventricles/diagnostic imaging , Humans , Male , Reproducibility of Results , Retrospective Studies , Stroke Volume/physiology , Ventricular Function, Left/physiology
10.
Am Heart J ; 182: 44-53, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27914499

ABSTRACT

BACKGROUND: Transcatheter aortic valve implantation (TAVI) is increasingly applied for aortic stenosis in elderly patients with impaired mobility and reduced quality of life. These patients may particularly benefit from postinterventional exercise programs, but no randomized study has evaluated the safety and efficacy of exercise in this population. METHODS: In a prospective pilot study, 30 patients after TAVI (mean age, 81±6 years, 44% female, 83±34 days postintervention) were randomly allocated 1:1 to a training group (TG) performing 8 weeks of supervised combined endurance and resistance exercise or to usual care. The formal primary efficacy end point was between-group difference in change in peak oxygen uptake assessed by cardiopulmonary exercise testing; secondary end points included muscular strength, 6-minute walk distance, and quality of life (Kansas City Cardiomyopathy Questionnaire and Medical Outcomes Study 12-Item Short-Form Health Survey questionnaires). Safety was assessed by documenting training-related adverse events, prosthesis, and renal function. RESULTS: Significant changes in favor of TG were observed for peak oxygen uptake (group difference, 3.7 mL/min per kg [95% CI, 1.1-6.3; P=.007]), muscular strength (bench press, 6 kg [95% CI, 3-10; P=.002]; rowing, 7 kg [95% CI, 3-11; P<.001]; pulldown, 9 kg [95% CI, 4-14; P=.001]; shoulder press, 5 kg [95% CI, 1-8; P=.008]; leg press, 17 kg [95% CI 6-28; P=.005]), components of quality of life (Kansas City Cardiomyopathy Questionnaire physical limitation, 19.2 [95% CI, 4.1-34.2; P=.015]; symptom burden, 12.3 [95% CI, 0.5-24.0; P=.041]; clinical summary, 12.4 [3.4-21.4; P=.009]), but not for other questionnaire subscales and 6-minute walk distance (15 m [95% CI, -23 to 53; P=.428]). Three dropouts unrelated to exercise occurred (TG=2; usual care,=1); prosthesis and renal function were not affected by the exercise intervention. CONCLUSIONS: In patients after TAVI, exercise training appears safe and highly effective with respect to improvements in exercise capacity, muscular strength, and quality of life. CLINICAL TRIAL REGISTRATION: Clinicaltrials.govNCT01935297.


Subject(s)
Aortic Valve Stenosis/surgery , Exercise Therapy , Muscle Strength/physiology , Postoperative Complications , Quality of Life , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Exercise Test/methods , Exercise Therapy/adverse effects , Exercise Therapy/methods , Exercise Tolerance/physiology , Female , Germany , Health Status Disparities , Humans , Male , Outcome and Process Assessment, Health Care , Pilot Projects , Postoperative Complications/physiopathology , Postoperative Complications/prevention & control , Postoperative Complications/psychology , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/methods
11.
Chron Respir Dis ; 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26961775

ABSTRACT

The two-minute walk test (2MWT) is less well validated than the well-known six-minute walk test (6MWT) as a field walking test in patients with chronic obstructive pulmonary disease (COPD). The primary objective of this study was to compare the accuracy of the 2MWT to the 6MWT in detecting exercise-induced oxygen desaturation in patients with severe COPD. Twenty-six patients with COPD (age: 61 ± 10 years, forced expired volume in one second: 37 ± 10%) that were normoxemic at rest performed a 2MWT and a 6MWT under normal ambient conditions on two consecutive days in random order. Oxygen saturation, total walking distance, heart rate, breathing frequency, dyspnea, and leg fatigue were evaluated. Average walking distances were 150 m (95% confidence interval (95% CI): 134-165 m) and 397 m (95% CI: 347-447 m) for the 2MWT and 6MWT, respectively (r = 0.80, p < 0.0001). The difference in minimum oxygen saturation during the 2MWT (83%, 95% CI: 81-86%) and 6MWT (mean 82%, 95% CI: 80-84%) was not statistically different and the data strongly correlated between the groups (r = 0.81, p < 0.0001). Other measurements from the 6MWT, including heart rate, breathing rate, and levels of perceived exertion were also comparable in 2MWT. The 2MWT showed comparable validity in detecting exercise-induced oxygen desaturation in patients with severe COPD compared to the 6MWT.

12.
Digestion ; 91(3): 239-47, 2015.
Article in English | MEDLINE | ID: mdl-25823689

ABSTRACT

BACKGROUND: Improving health-related quality of life is a primary target of therapy for patients with inflammatory bowel disease. Physical activity has been demonstrated to improve health-related quality of life in several patient populations with chronic disease. There are very few studies investigating the effects of physical activity on health-related quality of life in inflammatory bowel disease. The primary purpose of this study is to investigate the effects of 10 weeks of moderate physical activity on health-related quality of life in patients with inflammatory bowel disease. METHODS: Thirty patients with mild to moderate IBD (Crohn's Disease Activity Index (CDAI) <220 or Rachmilewitz Index (RI) <11) were randomized 1:1 to either supervised moderate-intensity running thrice a week for 10 weeks or a control group who were not prescribed any exercise. Health-related quality of life, symptoms, and inflammation were assessed at baseline and after 10 weeks. RESULTS: Participants were 41 ± 14 years (73% female), had a body mass index of 22.8 ± 4.1 kg/m(2), and an average CDAI or RI of 66.8 ± 42.4 and 3.6 ± 3.1. No adverse events occurred during the 10-week training period. Health-related quality of life, reported as IBDQ total score, improved 19% in the intervention group and 8% in the control group. Scores for the IBDQ social sub-scale were significantly improved in the intervention group compared with controls (ΔIBDQsocial = 6.27 ± 5.46 vs. 1.87 ± 4.76, p = 0.023). CONCLUSION: Patients suffering from moderately active IBD are capable of performing symptom-free regular endurance exercise. Our data support the assumption that PA is feasible in IBD patients. PA may furthermore improve quality of life through improvements in social well-being, and may, therefore, be a useful adjunct to IBD therapy.


Subject(s)
Exercise Therapy/methods , Health Status , Inflammatory Bowel Diseases/psychology , Inflammatory Bowel Diseases/therapy , Quality of Life , Adult , Female , Humans , Male , Middle Aged , Prospective Studies , Running , Severity of Illness Index , Surveys and Questionnaires , Time Factors
13.
Clin Obes ; : e12653, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475989

ABSTRACT

The goal of this study is to quantify the assumptions associated with the Wasserman-Hansen (WH) and Fitness Registry and the Importance of Exercise: A National Database (FRIEND) predictive peak oxygen consumption (pVO2 ) equations across body mass index (BMI). Assumptions in pVO2 for both equations were first determined using a simulation and then evaluated using exercise data from the Stanford Exercise Testing registry. We calculated percent-predicted VO2 (ppVO2 ) values for both equations and compared them using the Bland-Altman method. Assumptions associated with pVO2 across BMI categories were quantified by comparing the slopes of age-adjusted VO2 ratios (pVO2 /pre-exercise VO2 ) and ppVO2 values for different BMI categories. The simulation revealed lower predicted fitness among adults with obesity using the FRIEND equation compared to the WH equations. In the clinical cohort, we evaluated 2471 patients (56.9% male, 22% with BMI >30 kg/m2 , pVO2 26.8 mlO2 /kg/min). The Bland-Altman plot revealed an average relative difference of -1.7% (95% CI: -2.1 to -1.2%) between WH and FRIEND ppVO2 values with greater differences among those with obesity. Analysis of the VO2 ratio to ppVO2 slopes across the BMI spectrum confirmed the assumption of lower fitness in those with obesity, and this trend was more pronounced using the FRIEND equation. Peak VO2 estimations between the WH and FRIEND equations differed significantly among individuals with obesity. The FRIEND equation resulted in a greater attributable reduction in pVO2 associated with obesity relative to the WH equations. The outlined relationships between BMI and predicted VO2 may better inform the clinical interpretation of ppVO2 values during cardiopulmonary exercise test evaluations.

14.
Prog Cardiovasc Dis ; 83: 84-91, 2024.
Article in English | MEDLINE | ID: mdl-38452909

ABSTRACT

Endurance and resistance physical activity have been shown to stimulate the production of immunoglobulins and boost the levels of anti-inflammatory cytokines, natural killer cells, and neutrophils in the bloodstream, thereby strengthening the ability of the innate immune system to protect against diseases and infections. Coronavirus disease 19 (COVID-19) greatly impacted people's cardiorespiratory fitness (CRF) and health worldwide. Cardiopulmonary exercise testing (CPET) remains valuable in assessing physical condition, predicting illness severity, and guiding interventions and treatments. In this narrative review, we summarize the connections and impact of COVID-19 on CRF levels and its implications on the disease's progression, prognosis, and mortality. We also emphasize the significant contribution of CPET in both clinical evaluations of recovering COVID-19 patients and scientific investigations focused on comprehending the enduring health consequences of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cardiorespiratory Fitness , Exercise Test , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/diagnosis , SARS-CoV-2
15.
Am J Cardiol ; 215: 32-41, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38301753

ABSTRACT

Exercise capacity (EC) is an important predictor of survival in the general population and in subjects with cardiopulmonary disease. Despite its relevance, considering the percent-predicted workload (%pWL) given by current equations may overestimate EC in older adults. Therefore, to improve the reporting of EC in clinical practice, our main objective was to develop workload reference equations (pWL) that better reflect the relation between workload and age. Using the Fitness Registry and the Importance of Exercise National Database (FRIEND), we analyzed a reference group of 6,966 apparently healthy participants and 1,060 participants with heart failure who underwent graded treadmill cardiopulmonary exercise testing. For the first group, the mean age was 44 years (18 to 79); 56.5% of participants were males and 15.4% had obesity. Peak oxygen consumption was 11.6 ± 3.0 METs in males and 8.5 ± 2.4 METs in females. After partition analysis, we first developed sex-specific pWL equations to allow comparisons to a healthy weight reference. For males, pWL (METs) = 14.1-0.9×10-3×age2 and 11.5-0.87×10-3×age2 for females. We used those equations as denominators of %pWL, and based on their distribution, we determined thresholds for EC classification, with average EC defined by the range corresponding to 85% to 115%pWL. Compared with %pWL using current equations, the new equations yielded better-calibrated %pWL across different age ranges. We also derived body mass index-adjusted pWL equations that better assessed EC in subjects with heart failure. In conclusion, the novel pWL equations have the potential to impact the report of EC in practice.


Subject(s)
Heart Failure , Pulmonary Heart Disease , Female , Male , Humans , Aged , Adult , Child, Preschool , Exercise Tolerance , Workload , Body Mass Index
16.
Article in English | MEDLINE | ID: mdl-38634503

ABSTRACT

Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. While there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multi-center study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. MoTrPAC contains both a pre-clinical and human component. The details of the human studies component of MoTrPAC that include the design and methods are presented here. The human studies contain both an adult and pediatric component. In the adult component, sedentary participants are randomized to 12 weeks of Control, Endurance Exercise Training, or Resistance Exercise Training with outcomes measures completed before and following the 12 weeks. The adult component also includes recruitment of highly active endurance trained or resistance trained participants who only complete measures once. A similar design is used for the pediatric component; however, only endurance exercise is examined. Phenotyping measures include weight, body composition, vital signs, cardiorespiratory fitness, muscular strength, physical activity and diet, and other questionnaires. Participants also complete an acute rest period (adults only) or exercise session (adults, pediatrics) with collection of biospecimens (blood only for pediatrics) to allow for examination of the molecular responses. The design and methods of MoTrPAC may inform other studies. Moreover, MoTrPAC will provide a repository of data that can be used broadly across the scientific community.

17.
Eur J Appl Physiol ; 113(1): 147-55, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22615009

ABSTRACT

Borg's rating of perceived exertion (RPE) is a widely used psycho-physical tool to assess subjective perception of effort during exercise. We evaluated the association between Borg's RPE and physiological exercise parameters in a very large population. In this cohort study, 2,560 Caucasian men and women [median age 28 (IQR 17-44) years] completed incremental exercise tests on treadmills or cycle ergometers. Heart rate, blood lactate concentration, and RPE (Borg scale 6-20) were simultaneously measured at the end of each work load. Rating of perceived exertion was strongly correlated with heart rate (r = 0.74, p < 0.001) and blood lactate (r = 0.83, p < 0.001). The mean values for lactate threshold (LT) and individual anaerobic threshold corresponded to an RPE of 10.8 ± 1.8 and 13.6 ± 1.8, respectively. Fixed lactate thresholds of 3 and 4 mmol/L corresponded to RPEs of 12.8 ± 2.1 and 14.1 ± 2.0. Gender, age, coronary artery disease (CAD), physical activity status and exercise testing modality did not influence this association significantly (all p > 0.05). Borg's RPE seems to be an affordable, practical and valid tool for monitoring and prescribing exercise intensity, independent of gender, age, exercise modality, physical activity level and CAD status. Exercising at an RPE of 11-13 ("low") is recommended for less trained individuals, and an RPE of 13-15 may be recommended when more intense but still aerobic training is desired.


Subject(s)
Exercise/physiology , Heart Rate/physiology , Lactic Acid/blood , Perception/physiology , Physical Exertion/physiology , Psychometrics/methods , Self-Assessment , Adolescent , Adult , Cohort Studies , Female , Germany , Humans , Male , Young Adult
18.
Clinics (Sao Paulo) ; 78: 100225, 2023.
Article in English | MEDLINE | ID: mdl-37356413

ABSTRACT

BACKGROUND: Cardiopulmonary Exercise Testing (CPX) is essential for the assessment of exercise capacity for patients with Chronic Heart Failure (CHF). Respiratory gas and hemodynamic parameters such as Ventilatory Efficiency (VE/VCO2 slope), peak oxygen uptake (peak VO2), and heart rate recovery are established diagnostic and prognostic markers for clinical populations. Previous studies have suggested the clinical value of metrics related to respiratory gas collected during recovery from peak exercise, particularly recovery time to 50% (T1/2) of peak VO2. The current study explores these metrics in detail during recovery from peak exercise in CHF. METHODS: Patients with CHF who were referred for CPX and healthy individuals without formal diagnoses were assessed for inclusion. All subjects performed CPX on cycle ergometers to volitional exhaustion and were monitored for at least five minutes of recovery. CPX data were analyzed for overshoot of respiratory exchange ratio (RER=VCO2/VO2), ventilatory equivalent for oxygen (VE/VO2), end-tidal partial pressure of oxygen (PETO2), and T1/2 of peak VO2 and VCO2. RESULTS: Thirty-two patients with CHF and 30 controls were included. Peak VO2 differed significantly between patients and controls (13.5 ± 3.8 vs. 32.5 ± 9.8 mL/Kg*min-1, p < 0.001). Mean Left Ventricular Ejection Fraction (LVEF) was 35.9 ± 9.8% for patients with CHF compared to 61.1 ± 8.2% in the control group. The T1/2 of VO2, VCO2 and VE was significantly higher in patients (111.3 ± 51.0, 132.0 ± 38.8 and 155.6 ± 45.5s) than in controls (58.08 ± 13.2, 74.3 ± 21.1, 96.7 ± 36.8s; p < 0.001) while the overshoot of PETO2, VE/VO2 and RER was significantly lower in patients (7.2 ± 3.3, 41.9 ± 29.1 and 25.0 ± 13.6%) than in controls (10.1 ± 4.6, 62.1 ± 17.7 and 38.7 ± 15.1%; all p < 0.01). Most of the recovery metrics were significantly correlated with peak VO2 in CHF patients, but not with LVEF. CONCLUSIONS: Patients with CHF have a significantly blunted recovery from peak exercise. This is reflected in delays of VO2, VCO2, VE, PETO2, RER and VE/VO2, reflecting a greater energy required to return to baseline. Abnormal respiratory gas kinetics in CHF was negatively correlated with peak VO2 but not baseline LVEF.


Subject(s)
Heart Failure , Ventricular Function, Left , Humans , Stroke Volume , Kinetics , Exercise Test , Chronic Disease , Oxygen , Oxygen Consumption
19.
J Clin Med ; 12(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38137651

ABSTRACT

Assessing endurance in non-ambulatory individuals with Spinal Muscular Atrophy (SMA) has been challenging due to limited evaluation tools. The Assisted 6-Minute Cycling Test (A6MCT) is an upper limb ergometer assessment used in other neurologic disorders to measure endurance. To study the performance of the A6MCT in the non-ambulatory SMA population, prospective data was collected on 38 individuals with SMA (13 sitters; 25 non-sitters), aged 5 to 74 years (mean = 30.3; SD = 14.1). The clinical measures used were A6MCT, Revised Upper Limb Module (RULM), Adapted Test of Neuromuscular Disorders (ATEND), and Egen Klassifikation Scale 2 (EK2). Perceived fatigue was assessed using the Fatigue Severity Scale (FSS), and effort was assessed using the Rate of Perceived Exertion (RPE). Data were analyzed for: (1) Feasibility, (2) Clinical discrimination, and (3) Associations between A6MCT with clinical characteristics and outcomes. Results showed the A6MCT was feasible for 95% of the tested subjects, discriminated between functional groups (p = 0.0086), and was significantly associated with results obtained from RULM, ATEND, EK2, and Brooke (p < 0.0001; p = 0.029; p < 0.001; p = 0.005). These findings indicate the A6MCT's potential to evaluate muscular endurance in non-ambulatory SMA individuals, complementing clinician-rated assessments. Nevertheless, further validation with a larger dataset is needed for broader application.

20.
Eur Heart J Digit Health ; 4(5): 411-419, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794870

ABSTRACT

Aims: Physical activity is associated with decreased incidence of the chronic diseases associated with aging. We previously demonstrated that digital interventions delivered through a smartphone app can increase short-term physical activity. Methods and results: We offered enrolment to community-living iPhone-using adults aged ≥18 years in the USA, UK, and Hong Kong who downloaded the MyHeart Counts app. After completion of a 1-week baseline period, e-consented participants were randomized to four 7-day interventions. Interventions consisted of: (i) daily personalized e-coaching based on the individual's baseline activity patterns, (ii) daily prompts to complete 10 000 steps, (iii) hourly prompts to stand following inactivity, and (iv) daily instructions to read guidelines from the American Heart Association (AHA) website. After completion of one 7-day intervention, participants subsequently randomized to the next intervention of the crossover trial. The trial was completed in a free-living setting, where neither the participants nor investigators were blinded to the intervention. The primary outcome was change in mean daily step count from baseline for each of the four interventions, assessed in a modified intention-to-treat analysis (modified in that participants had to complete 7 days of baseline monitoring and at least 1 day of an intervention to be included in analyses). This trial is registered with ClinicalTrials.gov, NCT03090321. Conclusion: Between 1 January 2017 and 1 April 2022, 4500 participants consented to enrol in the trial (a subset of the approximately 50 000 participants in the larger MyHeart Counts study), of whom 2458 completed 7 days of baseline monitoring (mean daily steps 4232 ± 73) and at least 1 day of one of the four interventions. Personalized e-coaching prompts, tailored to an individual based on their baseline activity, increased step count significantly (+402 ± 71 steps from baseline, P = 7.1⨯10-8). Hourly stand prompts (+292 steps from baseline, P = 0.00029) and a daily prompt to read AHA guidelines (+215 steps from baseline, P = 0.021) were significantly associated with increased mean daily step count, while a daily reminder to complete 10 000 steps was not (+170 steps from baseline, P = 0.11). Digital studies have a significant advantage over traditional clinical trials in that they can continuously recruit participants in a cost-effective manner, allowing for new insights provided by increased statistical power and refinement of prior signals. Here, we present a novel finding that digital interventions tailored to an individual are effective in increasing short-term physical activity in a free-living cohort. These data suggest that participants are more likely to react positively and increase their physical activity when prompts are personalized. Further studies are needed to determine the effects of digital interventions on long-term outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL