Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Cell ; 187(1): 204-215.e14, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38070508

ABSTRACT

Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy. Using 13C-glucose and liquid chromatography-mass spectrometry (LC-MS), we profiled the metabolism of fetal brains, hearts, livers, and placentas harvested from pregnant dams between embryonic days (E)10.5 and 18.5. Our analysis revealed metabolic features specific to a hyperglycemic environment and signatures that may denote developmental transitions during euglycemic development. We observed sorbitol accumulation in fetal tissues and altered neurotransmitter levels in fetal brains isolated from hyperglycemic dams. Tracing 13C-glucose revealed disparate fetal nutrient sourcing depending on maternal glycemic states. Regardless of glycemic state, histidine-derived metabolites accumulated in late-stage fetal tissues. Our rich dataset presents a comprehensive overview of in vivo fetal tissue metabolism and alterations due to maternal hyperglycemia.


Subject(s)
Diabetes Mellitus , Diabetes, Gestational , Fetus , Animals , Female , Mice , Pregnancy , Diabetes Mellitus/metabolism , Fetus/metabolism , Glucose/metabolism , Placenta/metabolism , Diabetes, Gestational/metabolism
2.
Cell ; 175(1): 117-132.e21, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30197082

ABSTRACT

The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.


Subject(s)
Carrier Proteins/physiology , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Carbohydrate Metabolism/physiology , Carrier Proteins/metabolism , Cell Line, Tumor , Glucose/metabolism , Glucose Transporter Type 1 , Glycolysis/physiology , Humans , Hyaluronic Acid/physiology , Hyaluronoglucosaminidase/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Tristetraprolin/metabolism , Tristetraprolin/physiology
3.
Cell ; 160(3): 363-4, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25635452

ABSTRACT

To colonize the liver, colon cancer metastases must overcome hypoxia and other metabolic stress. Loo et al. now show that metastatic cells achieve this by decreasing miR-483 and miR-551a expression, which derepresses creatine kinase expression and allows energy to be captured from extracellular ATP through generation and import of phosphocreatine.


Subject(s)
Colorectal Neoplasms/metabolism , Liver Neoplasms/secondary , MicroRNAs/metabolism , Neoplasm Metastasis/genetics , Animals , Humans , Male
4.
Mol Cell ; 80(5): 762-763, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33275887

ABSTRACT

Lactate initiates Mg2+ release from the ER and subsequent uptake by the mitochondria.


Subject(s)
Lactic Acid , Magnesium , Biological Transport , Lactic Acid/metabolism , Magnesium/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics
5.
Development ; 150(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37260407

ABSTRACT

Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.


Subject(s)
Diet , Nutrients , Female , Pregnancy , Humans , Vitamins , Cell Differentiation , Aging/physiology
6.
Mol Cell ; 67(1): 128-138.e7, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28648777

ABSTRACT

Mutations in cancer reprogram amino acid metabolism to drive tumor growth, but the molecular mechanisms are not well understood. Using an unbiased proteomic screen, we identified mTORC2 as a critical regulator of amino acid metabolism in cancer via phosphorylation of the cystine-glutamate antiporter xCT. mTORC2 phosphorylates serine 26 at the cytosolic N terminus of xCT, inhibiting its activity. Genetic inhibition of mTORC2, or pharmacologic inhibition of the mammalian target of rapamycin (mTOR) kinase, promotes glutamate secretion, cystine uptake, and incorporation into glutathione, linking growth factor receptor signaling with amino acid uptake and utilization. These results identify an unanticipated mechanism regulating amino acid metabolism in cancer, enabling tumor cells to adapt to changing environmental conditions.


Subject(s)
Amino Acid Transport System y+/metabolism , Brain Neoplasms/enzymology , Cysteine/metabolism , Glioblastoma/enzymology , Glutamine/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , A549 Cells , Amino Acid Transport System y+/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Glutathione/biosynthesis , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/genetics , Mutation , Phosphorylation , Protein Binding , Proteomics/methods , RNA Interference , Serine , TOR Serine-Threonine Kinases/genetics , Tandem Mass Spectrometry , Time Factors , Transfection , Tumor Microenvironment
7.
J Lipid Res ; 65(2): 100434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37640283

ABSTRACT

Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of ß3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.


Subject(s)
Fatty Acids, Nonesterified , Lipolysis , Mice , Animals , Lipolysis/physiology , Fatty Acids, Nonesterified/metabolism , Lipidomics , Adipocytes/metabolism , Adipose Tissue/metabolism , Liver/metabolism , Triglycerides/metabolism
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161263

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that typically causes asymptomatic infection but can promote B lymphoid tumors in the immune suppressed. In vitro, EBV infection of primary B cells stimulates glycolysis during immortalization into lymphoblastoid cell lines (LCLs). Lactate export during glycolysis is crucial for continued proliferation of many cancer cells-part of a phenomenon known as the "Warburg effect"- and is mediated by monocarboxylate transporters (MCTs). However, the role of MCTs has yet to be studied in EBV-associated malignancies, which display Warburg-like metabolism in vitro. Here, we show that EBV infection of B lymphocytes directly promotes temporal induction of MCT1 and MCT4 through the viral proteins EBNA2 and LMP1, respectively. Functionally, MCT1 was required for early B cell proliferation, and MCT4 up-regulation promoted acquired resistance to MCT1 antagonism in LCLs. However, dual MCT1/4 inhibition led to LCL growth arrest and lactate buildup. Metabolic profiling in LCLs revealed significantly reduced oxygen consumption rates (OCRs) and NAD+/NADH ratios, contrary to previous observations of increased OCR and unaltered NAD+/NADH ratios in MCT1/4-inhibited cancer cells. Furthermore, U-13C6-glucose labeling of MCT1/4-inhibited LCLs revealed depleted glutathione pools that correlated with elevated reactive oxygen species. Finally, we found that dual MCT1/4 inhibition also sensitized LCLs to killing by the electron transport chain complex I inhibitors phenformin and metformin. These findings were extended to viral lymphomas associated with EBV and the related gammaherpesvirus KSHV, pointing at a therapeutic approach for targeting both viral lymphomas.


Subject(s)
Lymphoma/metabolism , Lymphoma/virology , Monocarboxylic Acid Transporters/antagonists & inhibitors , B-Lymphocytes/virology , Cell Line, Tumor , Cell Proliferation , Epstein-Barr Virus Infections/virology , Glucose/metabolism , Glutathione/metabolism , Herpesvirus 4, Human/physiology , Herpesvirus 8, Human/physiology , Humans , Lactic Acid/metabolism , Lymphoma/pathology , Metformin/pharmacology , NAD/metabolism , Oxygen Consumption , Phenformin/pharmacology , Reactive Oxygen Species/metabolism , Up-Regulation
9.
Cancer ; 128(4): 675-684, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34724198

ABSTRACT

BACKGROUND: Germline variants in fumarate hydratase (FH) are associated with autosomal dominant (AD) hereditary leiomyomatosis and renal cell cancer (HLRCC) and autosomal recessive (AR) fumarase deficiency (FMRD). The prevalence and cancer penetrance across different FH variants remain unclear. METHODS: A database containing 120,061 records from individuals undergoing cancer germline testing was obtained. FH variants were classified into 3 categories: AD HLRCC variants, AR FMRD variants, and variants of unknown significance (VUSs). Individuals with variants from these categories were compared with those with negative genetic testing. RESULTS: FH variants were detected in 1.3% of individuals (AD HLRCC, 0.3%; AR FMRD, 0.4%; VUS, 0.6%). The rate of AD HLRCC variants discovered among reportedly asymptomatic individuals without a clear indication for HLRCC testing was 1 in 2668 (0.04%). In comparison with those with negative genetic testing, the renal cell carcinoma (RCC) prevalence was elevated with AD HLRCC variants (17.0% vs 4.5%; P < .01) and VUSs (6.4% vs 4.5%; P = .02) but not with AR FMRD variants. CONCLUSIONS: The prevalence of HLRCC discovered incidentally on germline testing is similar to recent population carrier estimates, and this suggests that this is a relatively common cancer syndrome. Compared with those with negative genetic testing, those with VUSs had an elevated risk of RCC, whereas those with AR FMRD variants did not.


Subject(s)
Carcinoma, Renal Cell , Fumarate Hydratase , Kidney Neoplasms , Leiomyomatosis , Neoplastic Syndromes, Hereditary , Skin Neoplasms , Uterine Neoplasms , Carcinoma, Renal Cell/epidemiology , Carcinoma, Renal Cell/genetics , Female , Fumarate Hydratase/genetics , Germ Cells , Germ-Line Mutation , Humans , Kidney Neoplasms/epidemiology , Kidney Neoplasms/genetics , Leiomyomatosis/epidemiology , Leiomyomatosis/genetics , Leiomyomatosis/pathology , Neoplastic Syndromes, Hereditary/epidemiology , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology , Prevalence , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Uterine Neoplasms/epidemiology , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
10.
Mol Cell ; 49(2): 310-21, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23201122

ABSTRACT

Differences in global levels of histone acetylation occur in normal and cancer cells, although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pH(i)). As pH(i) decreases, histones are globally deacetylated by histone deacetylases (HDACs), and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs), preventing further reductions in pH(i). Conversely, global histone acetylation increases as pH(i) rises, such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pH(i), particularly compromising pH(i) maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus, acetylation of chromatin functions as a rheostat to regulate pH(i) with important implications for mechanism of action and therapeutic use of HDAC inhibitors.


Subject(s)
Histones/metabolism , Intracellular Fluid/metabolism , Protein Processing, Post-Translational , Acetates , Acetylation , Carbohydrate Metabolism , Chromatin , Gene Expression Regulation , Glucose/physiology , Glutamine/physiology , HeLa Cells , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Histones/genetics , Humans , Hydrogen-Ion Concentration , Hydroxamic Acids/pharmacology , Monocarboxylic Acid Transporters/metabolism , Niacinamide/pharmacology , Pyruvic Acid/metabolism , Sequence Analysis, RNA , Transcriptome
11.
Nature ; 510(7505): 397-401, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24828042

ABSTRACT

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit ß is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit ß and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


Subject(s)
Caenorhabditis elegans/drug effects , Ketoglutaric Acids/pharmacology , Longevity/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , HEK293 Cells , Humans , Jurkat Cells , Longevity/drug effects , Longevity/genetics , Mice , Mitochondrial Proton-Translocating ATPases/genetics , Protein Binding
12.
BMC Biol ; 17(1): 59, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31319842

ABSTRACT

This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.


Subject(s)
Neoplasms/metabolism , Viruses/metabolism , Host-Pathogen Interactions , Metabolic Networks and Pathways , Neoplasms/virology
13.
Mol Syst Biol ; 13(2): 914, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28202506

ABSTRACT

Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.


Subject(s)
DNA Copy Number Variations , Gene Expression Profiling/methods , Glycolysis , Neoplasms/genetics , Cell Line, Tumor , Evolution, Molecular , Gene Amplification , Gene Deletion , Gene Expression Regulation, Neoplastic , Genomic Instability , Humans , Metabolic Networks and Pathways , Principal Component Analysis , Selection, Genetic
14.
Nature ; 546(7658): 357-358, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28607481

Subject(s)
Cell Cycle , Cell Division
15.
J Cell Sci ; 128(12): 2236-48, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25956888

ABSTRACT

Autocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that--even after full differentiation and maturation--continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death. Gene-expression profiling showed that endothelial VEGF contributes to the regulation of cell cycle and mitochondrial gene clusters, as well as several--but not all--targets of the transcription factor FOXO1. Indeed, VEGF-deficient endothelium in vitro and in vivo showed increased levels of FOXO1 protein in the nucleus and cytoplasm. Silencing of FOXO1 in VEGF-depleted cells reversed expression profiles of several of the gene clusters that were de-regulated in VEGF knockdown, and rescued both cell death and autophagy phenotypes. Our data suggest that endothelial VEGF maintains vascular homeostasis through regulation of FOXO1 levels, thereby ensuring physiological metabolism and endothelial cell survival.


Subject(s)
Apoptosis , Autocrine Communication , Autophagy , Biomarkers/metabolism , Endothelium, Vascular/pathology , Forkhead Transcription Factors/metabolism , Mitochondria/pathology , Vascular Endothelial Growth Factor A/physiology , Animals , Blotting, Western , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelium, Vascular/metabolism , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Humans , Hypoxia/physiopathology , Mice , Mice, Knockout , Mitochondria/metabolism , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
16.
J Biol Chem ; 290(9): 5566-81, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25468909

ABSTRACT

Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity.


Subject(s)
Acute-Phase Proteins/metabolism , Adipose Tissue/metabolism , Estrogen Receptor alpha/metabolism , Lipocalins/metabolism , Obesity/metabolism , Oncogene Proteins/metabolism , 3T3-L1 Cells , Acute-Phase Proteins/genetics , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue/cytology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Estrogen Receptor alpha/genetics , Female , Gene Expression Profiling , HEK293 Cells , Humans , Immunoblotting , Lipocalin-2 , Lipocalins/blood , Lipocalins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity/genetics , Oncogene Proteins/blood , Oncogene Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction
17.
Semin Cell Dev Biol ; 23(4): 352-61, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22406683

ABSTRACT

Altered cellular metabolism is a defining feature of cancer [1]. The best studied metabolic phenotype of cancer is aerobic glycolysis--also known as the Warburg effect--characterized by increased metabolism of glucose to lactate in the presence of sufficient oxygen. Interest in the Warburg effect has escalated in recent years due to the proven utility of FDG-PET for imaging tumors in cancer patients and growing evidence that mutations in oncogenes and tumor suppressor genes directly impact metabolism. The goals of this review are to provide an organized snapshot of the current understanding of regulatory mechanisms important for Warburg effect and its role in tumor biology. Since several reviews have covered aspects of this topic in recent years, we focus on newest contributions to the field and reference other reviews where appropriate.


Subject(s)
Glycolysis , Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Animals , Drug Resistance, Neoplasm , Fluorodeoxyglucose F18/metabolism , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Humans , Isoenzymes/metabolism , Mitochondria/metabolism , Neoplasms/diagnostic imaging , Neoplastic Stem Cells/metabolism , Positron-Emission Tomography , Protein Processing, Post-Translational , Radiopharmaceuticals/metabolism , Tumor Microenvironment
18.
Am J Pathol ; 182(4): 1400-11, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23416162

ABSTRACT

Liposarcoma is a type of soft tissue sarcoma that exhibits poor survival and a high recurrence rate. Treatment is generally limited to surgery and radiation, which emphasizes the need for better understanding of this disease. Because very few in vivo and in vitro models can reproducibly recapitulate the human disease, we generated several xenograft models from surgically resected human dedifferentiated liposarcoma. All xenografts recapitulated morphological and gene expression characteristics of the patient tumors after continuous in vivo passages. Importantly, xenograftability was directly correlated with disease-specific survival of liposarcoma patients. Thus, the ability for the tumor of a patient to engraft may help identify those patients who will benefit from more aggressive treatment regimens. Gene expression analyses highlighted the association between xenograftability and a unique gene expression signature, including down-regulated PTEN tumor-suppressor gene expression and a progenitor-like phenotype. When treated with the PI3K/AKT/mTOR pathway inhibitor rapamycin alone or in combination with the multikinase inhibitor sorafenib, all xenografts responded with increased lipid content and a more differentiated gene expression profile. These human xenograft models may facilitate liposarcoma research and accelerate the generation of readily translatable preclinical data that could ultimately influence patient care.


Subject(s)
Down-Regulation/genetics , Liposarcoma/enzymology , Liposarcoma/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Xenograft Model Antitumor Assays , Adult , Aged , Aged, 80 and over , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Down-Regulation/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipid Metabolism/drug effects , Liposarcoma/drug therapy , Liposarcoma/pathology , Male , Mice , Middle Aged , Neoplasm Invasiveness , PTEN Phosphohydrolase/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Signal Transduction/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
19.
Nat Chem Biol ; 8(10): 839-47, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22922757

ABSTRACT

Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.


Subject(s)
Biopolymers/metabolism , Cell Transformation, Neoplastic , Enzyme Activators/pharmacology , Pyruvate Kinase/metabolism , Animals , Biopolymers/chemistry , Blotting, Western , Cell Proliferation , Humans , Mice , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/pathology , Pyruvate Kinase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL