Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
PLoS Comput Biol ; 18(2): e1009918, 2022 02.
Article in English | MEDLINE | ID: mdl-35226669

ABSTRACT

Reactivation of fetal-specific genes and isoforms occurs during heart failure. However, the underlying molecular mechanisms and the extent to which the fetal program switch occurs remains unclear. Limitations hindering transcriptome-wide analyses of alternative splicing differences (i.e. isoform switching) in cardiovascular system (CVS) tissues between fetal, healthy adult and heart failure have included both cellular heterogeneity across bulk RNA-seq samples and limited availability of fetal tissue for research. To overcome these limitations, we have deconvoluted the cellular compositions of 996 RNA-seq samples representing heart failure, healthy adult (heart and arteria), and fetal-like (iPSC-derived cardiovascular progenitor cells) CVS tissues. Comparison of the expression profiles revealed that reactivation of fetal-specific RNA-binding proteins (RBPs), and the accompanied re-expression of 1,523 fetal-specific isoforms, contribute to the transcriptome differences between heart failure and healthy adult heart. Of note, isoforms for 20 different RBPs were among those that reverted in heart failure to the fetal-like expression pattern. We determined that, compared with adult-specific isoforms, fetal-specific isoforms encode proteins that tend to have more functions, are more likely to harbor RBP binding sites, have canonical sequences at their splice sites, and contain typical upstream polypyrimidine tracts. Our study suggests that compared with healthy adult, fetal cardiac tissue requires stricter transcriptional regulation, and that during heart failure reversion to this stricter transcriptional regulation occurs. Furthermore, we provide a resource of cardiac developmental stage-specific and heart failure-associated genes and isoforms, which are largely unexplored and can be exploited to investigate novel therapeutics for heart failure.


Subject(s)
Heart Failure , Adult , Alternative Splicing/genetics , Fetus/metabolism , Heart Failure/genetics , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Adv Funct Mater ; 32(8)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35603230

ABSTRACT

We report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. Stable amplitudes of intracellular potentials from 3D tissue-like networks of neurons and cardiomyocytes are obtained. Individual electrical addressability is necessary for high-fidelity intracellular electrophysiological recordings. This study paves the way toward predictive, high-throughput, and low-cost electrophysiological drug screening platforms.

3.
Immunity ; 36(4): 572-85, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22483804

ABSTRACT

Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1-MLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7(-/-) macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response.


Subject(s)
Glycosylphosphatidylinositols/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Animals , Cell Membrane/metabolism , Cells, Cultured , Glycosylphosphatidylinositols/biosynthesis , Hexosyltransferases/biosynthesis , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lipopolysaccharide Receptors/biosynthesis , Lipopolysaccharides/immunology , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/biosynthesis , Myeloid-Lymphoid Leukemia Protein/genetics , Signal Transduction
4.
FASEB J ; 31(12): 5356-5370, 2017 12.
Article in English | MEDLINE | ID: mdl-28790175

ABSTRACT

JMJD6 is known to localize in the nucleus, exerting histone arginine demethylase and lysyl hydroxylase activities. A novel localization of JMJD6 in the extracellular matrix, resulting from its secretion as a soluble protein, was unveiled by a new anti-JMJD6 mAb called P4E11, which was developed to identify new targets in the stroma. Recombinant JMJD6 binds with collagen type I (Coll-I), and distinct JMJD6 peptides interfere with collagen fibrillogenesis, collagen-fibronectin interaction, and adhesion of human tumor cells to the collagen substrate. P4E11 and collagen binding to JMJD6 are mutually exclusive because the amino acid sequences of JMJD6 necessary for the interaction with Coll-I are part of the conformational epitope recognized by P4E11. In mice injected with mouse 4T1 breast carcinoma cells, treatment with P4E11 reduced fibrosis at the primary tumor and prevented lung metastases. Reduction of fibrosis has also been documented in human breast and ovarian tumors (MDA-MB-231 and IGROV1, respectively) xenotransplanted into immunodeficient mice treated with P4E11. In summary, this study uncovers a new localization and function for JMJD6 that is most likely independent from its canonical enzymatic activities, and demonstrates that JMJD6 can functionally interact with Coll-I. P4E11 mAb, inhibiting JMJD6/Coll-I interaction, represents a new opportunity to target fibrotic and tumor diseases.-Miotti, S., Gulino, A., Ferri, R., Parenza, M., Chronowska, A., Lecis, D., Sangaletti, S., Tagliabue, E., Tripodo, C., Colombo, M. P. Antibody-mediated blockade of JMJD6 interaction with collagen I exerts antifibrotic and antimetastatic activities.


Subject(s)
Antibodies, Monoclonal/metabolism , Collagen Type I/metabolism , Receptors, Cell Surface/metabolism , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Collagen Type I/genetics , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Knockout , Osteonectin/genetics , Osteonectin/metabolism , Peptide Library , Protein Binding , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Xenograft Model Antitumor Assays
5.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746472

ABSTRACT

The regulatory mechanisms underlying the response to pro-inflammatory cytokines during myocarditis are poorly understood. Here, we use iPSC-derived cardiovascular progenitor cells (CVPCs) to model the response to interferon gamma (IFN-γ) during myocarditis. We generate RNA-seq and ATAC-seq for four CVPCs that were treated with IFN-γ and compare them with paired untreated controls. Transcriptional differences after treatment show that IFN-γ initiates an innate immune cell-like response in the vascular cardiac endothelium. IFN-γ treatment also shifts the CVPC transcriptome towards the adult coronary artery and aorta profiles and expands the relative endothelial cell population in all four CVPC lines. Analysis of the accessible chromatin shows that IFN-γ is a potent chromatin remodeler and establishes an IRF-STAT immune-cell like regulatory network. Our findings reveal insights into the endothelial-specific protective mechanisms during myocarditis.

6.
Article in English | MEDLINE | ID: mdl-38985549

ABSTRACT

Intracellular electrophysiology, a vital and versatile technique in cellular neuroscience, is typically conducted using the patch-clamp method. Despite its effectiveness, this method poses challenges due to its complexity and low throughput. The pursuit of multi-channel parallel neural intracellular recording has been a long-standing goal, yet achieving reliable and consistent scaling has been elusive because of several technological barriers. In this work, we introduce a micropower integrated circuit, optimized for scalable, high-throughput in vitro intrinsically intracellular electrophysiology. This system is capable of simultaneous recording and stimulation, implementing all essential functions such as signal amplification, acquisition, and control, with a direct interface to electrodes integrated on the chip. The electrophysiology system-on-chip (eSoC), fabricated in 180nm CMOS, measures 2.236 mm × 2.236 mm. It contains four 8 × 8 arrays of nanowire electrodes, each with a 50 µm pitch, placed over the top-metal layer on the chip surface, totaling 256 channels. Each channel has a power consumption of 0.47 µW, suitable for current stimulation and voltage recording, and covers 80 dB adjustable range at a sampling rate of 25 kHz. Experimental recordings with the eSoC from cultured neurons in vitro validate its functionality in accurately resolving chemically induced multi-unit intracellular electrical activity.

7.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645112

ABSTRACT

Most GWAS loci are presumed to affect gene regulation, however, only ∼43% colocalize with expression quantitative trait loci (eQTLs). To address this colocalization gap, we identify eQTLs, chromatin accessibility QTLs (caQTLs), and histone acetylation QTLs (haQTLs) using molecular samples from three early developmental (EDev) tissues. Through colocalization, we annotate 586 GWAS loci for 17 traits by QTL complexity, QTL phenotype, and QTL temporal specificity. We show that GWAS loci are highly enriched for colocalization with complex QTL modules that affect multiple elements (genes and/or peaks). We also demonstrate that caQTLs and haQTLs capture regulatory variations not associated with eQTLs and explain ∼49% of the functionally annotated GWAS loci. Additionally, we show that EDev-unique QTLs are strongly depleted for colocalizing with GWAS loci. By conducting one of the largest multi-omic QTL studies to date, we demonstrate that many GWAS loci exhibit phenotypic complexity and therefore, are missed by traditional eQTL analyses.

8.
Nat Commun ; 15(1): 1664, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395976

ABSTRACT

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Gene Regulatory Networks , Chromatin/genetics , Cell Differentiation/genetics , Octamer Transcription Factor-3/genetics
9.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38798402

ABSTRACT

Because most DNA-binding transcription factors (dbTFs), including the architectural regulator CTCF, bind RNA and exhibit di-/multimerization, a central conundrum is whether these distinct properties are regulated post-transcriptionally to modulate transcriptional programs. Here, investigating stress-dependent activation of SIRT1, encoding an evolutionarily-conserved protein deacetylase, we show that induced phosphorylation of CTCF acts as a rheostat to permit CTCF occupancy of low-affinity promoter DNA sites to precisely the levels necessary. This CTCF recruitment to the SIRT1 promoter is eliciting a cardioprotective cardiomyocyte transcriptional activation program and provides resilience against the stress of the beating heart in vivo . Mice harboring a mutation in the conserved low-affinity CTCF promoter binding site exhibit an altered, cardiomyocyte-specific transcriptional program and a systolic heart failure phenotype. This transcriptional role for CTCF reveals that a covalent dbTF modification regulating signal-dependent transcription serves as a previously unsuspected component of the oxidative stress response.

10.
Nat Commun ; 14(1): 1132, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854752

ABSTRACT

The causal variants and genes underlying thousands of cardiac GWAS signals have yet to be identified. Here, we leverage spatiotemporal information on 966 RNA-seq cardiac samples and perform an expression quantitative trait locus (eQTL) analysis detecting eQTLs considering both eGenes and eIsoforms. We identify 2,578 eQTLs associated with a specific developmental stage-, tissue- and/or cell type. Colocalization between eQTL and GWAS signals of five cardiac traits identified variants with high posterior probabilities for being causal in 210 GWAS loci. Pulse pressure GWAS loci are enriched for colocalization with fetal- and smooth muscle- eQTLs; pulse rate with adult- and cardiac muscle- eQTLs; and atrial fibrillation with cardiac muscle- eQTLs. Fine mapping identifies 79 credible sets with five or fewer SNPs, of which 15 were associated with spatiotemporal eQTLs. Our study shows that many cardiac GWAS variants impact traits and disease in a developmental stage-, tissue- and/or cell type-specific fashion.


Subject(s)
Atrial Fibrillation , Heart , Humans , Myocardium , Atrial Fibrillation/genetics , Blood Pressure , Fetus
11.
Nat Commun ; 14(1): 6928, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903777

ABSTRACT

The impact of genetic regulatory variation active in early pancreatic development on adult pancreatic disease and traits is not well understood. Here, we generate a panel of 107 fetal-like iPSC-derived pancreatic progenitor cells (iPSC-PPCs) from whole genome-sequenced individuals and identify 4065 genes and 4016 isoforms whose expression and/or alternative splicing are affected by regulatory variation. We integrate eQTLs identified in adult islets and whole pancreas samples, which reveal 1805 eQTL associations that are unique to the fetal-like iPSC-PPCs and 1043 eQTLs that exhibit regulatory plasticity across the fetal-like and adult pancreas tissues. Colocalization with GWAS risk loci for pancreatic diseases and traits show that some putative causal regulatory variants are active only in the fetal-like iPSC-PPCs and likely influence disease by modulating expression of disease-associated genes in early development, while others with regulatory plasticity likely exert their effects in both the fetal and adult pancreas by modulating expression of different disease genes in the two developmental stages.


Subject(s)
Diabetes Mellitus , Quantitative Trait Loci , Adult , Humans , Quantitative Trait Loci/genetics , Genome-Wide Association Study , Pancreas , Base Sequence , Diabetes Mellitus/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
12.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37292794

ABSTRACT

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discovered 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which were highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlied the coordinated expression of genes in the GNMs. Epigenetic analyses revealed that regulatory networks underlying self-renewal and pluripotency have a surprising level of complexity. Genetic analyses identified thousands of regulatory variants that overlapped predicted transcription factor binding sites and were associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network were significantly enriched for regulatory variants with large effects, suggesting that they may play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work captures the coordinated activity of tens of thousands of regulatory elements in hiPSCs and bins these elements into discrete functionally characterized regulatory networks, shows that regulatory elements in pluripotency networks harbor variants with large effects, and provides a rich resource for future pluripotent stem cell research.

13.
Dev Cell ; 58(21): 2206-2216.e5, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37848026

ABSTRACT

Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.


Subject(s)
Enhancer Elements, Genetic , Induced Pluripotent Stem Cells , Humans , Enhancer Elements, Genetic/genetics , Myocytes, Cardiac/metabolism , Binding Sites , Nucleotides
14.
Cell Rep ; 37(7): 110020, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34762851

ABSTRACT

Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Chromosome Mapping/methods , Computational Biology/methods , Databases, Genetic , Ethnicity/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Organ Specificity/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , Transcriptome/genetics
15.
medRxiv ; 2021 May 12.
Article in English | MEDLINE | ID: mdl-34013287

ABSTRACT

Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we applied colocalization to compare summary statistics for 16 GWASs from the COVID-19 Host Genetics Initiative to investigate similarities and differences in their genetic signals. We identified 9 loci associated with susceptibility (one with two independent GWAS signals; one with an ethnicity-specific signal), 14 associated with severity (one with two independent GWAS signals; two with ethnicity-specific signals) and one harboring two discrepant GWAS signals (one for susceptibility; one for severity). Utilizing colocalization we also identified 45 GTEx tissues that had eQTL(s) for 18 genes strongly associated with GWAS signals in eleven loci (1-4 genes per locus). Some of these genes showed tissue-specific altered expression and others showed altered expression in up to 41 different tissue types. Our study provides insights into the complex molecular mechanisms underlying inherited predispositions to COVID-19-disease phenotypes.

16.
Bio Protoc ; 10(18): e3755, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-33659414

ABSTRACT

Induced pluripotent stem cell derived cardiovascular progenitor cells (iPSC-CVPCs) provide an unprecedented platform for examining the molecular underpinnings of cardiac development and disease etiology, but also have great potential to play pivotal roles in the future of regenerative medicine and pharmacogenomic studies. Biobanks like iPSCORE ( Stacey et al., 2013 ; Panopoulos et al., 2017 ), which contain iPSCs generated from hundreds of genetically and ethnically diverse individuals, are an invaluable resource for conducting these studies. Here, we present an optimized, cost-effective and highly standardized protocol for large-scale derivation of human iPSC-CVPCs using small molecules and purification using metabolic selection. We have successfully applied this protocol to derive iPSC-CVPCs from 154 different iPSCORE iPSC lines obtaining large quantities of highly pure cardiac cells. An important component of our protocol is Cell confluency estimates (ccEstimate), an automated methodology for estimating the time when an iPSC monolayer will reach 80% confluency, which is optimal for initiating iPSC-CVPC derivation, and enables the protocol to be readily used across iPSC lines with different growth rates. Moreover, we showed that cellular heterogeneity across iPSC-CVPCs is due to varying proportions of two distinct cardiac cell types: cardiomyocytes (CMs) and epicardium-derived cells (EPDCs), both of which have been shown to have a critical function in heart regeneration. This protocol eliminates the need of iPSC line-to-line optimization and can be easily adapted and scaled to high-throughput studies or to generate large quantities of cells suitable for regenerative medicine applications.

17.
Cell Stem Cell ; 27(3): 347-349, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888420

ABSTRACT

mESCs can self-renew indefinitely in vitro. However, depending on culture conditions some strains are more unstable than others. In this issue of Cell Stem Cell, Skelly et al. (2020) and Ortmann et al. (2020) shed light into the role genetic variation plays in control of ground state pluripotency.


Subject(s)
Mouse Embryonic Stem Cells , Pluripotent Stem Cells , Biological Variation, Population , Genetic Variation/genetics
18.
Nat Commun ; 11(1): 4426, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873812

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nat Commun ; 11(1): 955, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075962

ABSTRACT

The Genotype-Tissue Expression (GTEx) resource has provided insights into the regulatory impact of genetic variation on gene expression across human tissues; however, thus far has not considered how variation acts at the resolution of the different cell types. Here, using gene expression signatures obtained from mouse cell types, we deconvolute bulk RNA-seq samples from 28 GTEx tissues to quantify cellular composition, which reveals striking heterogeneity across these samples. Conducting eQTL analyses for GTEx liver and skin samples using cell composition estimates as interaction terms, we identify thousands of genetic associations that are cell-type-associated. The skin cell-type associated eQTLs colocalize with skin diseases, indicating that variants which influence gene expression in distinct skin cell types play important roles in traits and disease. Our study provides a framework to estimate the cellular composition of GTEx tissues enabling the functional characterization of human genetic variation that impacts gene expression in cell-type-specific manners.


Subject(s)
Genetic Predisposition to Disease , Organ Specificity/genetics , Quantitative Trait Loci/genetics , Transcriptome/genetics , Animals , Gene Expression Profiling , Genetic Variation , Genome/genetics , Genotype , Humans , Liver/cytology , Liver/metabolism , Mice , Phenotype , Skin/cytology , Skin/metabolism
20.
Nat Commun ; 11(1): 2928, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522985

ABSTRACT

Structural variants (SVs) and short tandem repeats (STRs) are important sources of genetic diversity but are not routinely analyzed in genetic studies because they are difficult to accurately identify and genotype. Because SVs and STRs range in size and type, it is necessary to apply multiple algorithms that incorporate different types of evidence from sequencing data and employ complex filtering strategies to discover a comprehensive set of high-quality and reproducible variants. Here we assemble a set of 719 deep whole genome sequencing (WGS) samples (mean 42×) from 477 distinct individuals which we use to discover and genotype a wide spectrum of SV and STR variants using five algorithms. We use 177 unique pairs of genetic replicates to identify factors that affect variant call reproducibility and develop a systematic filtering strategy to create of one of the most complete and well characterized maps of SVs and STRs to date.


Subject(s)
Microsatellite Repeats/genetics , Whole Genome Sequencing/methods , Algorithms , Computational Biology , Genotype , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans
SELECTION OF CITATIONS
SEARCH DETAIL