Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nanomedicine ; 10(3): 553-60, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24096031

ABSTRACT

Thermosensitive micelles composed of a copolymer of methoxy polyethylene glycol (mPEG), polylactic acid (PLA), and 1,6-bis (p-carboxyphenoxy) hexane (CPH), namely methoxy polyethylene glycol-co-polylactic acid-co-aromatic anhydride (mPEG-PLCPHA), were fabricated for application as a promising hydrophilic drug carrier. The copolymer can self-assemble into micelles in PBS by hydrophobic interaction. The diameters of these micelles increased as the environmental temperature increased. An increase in viscosity with sol-to-gel transition occurred as temperature increased from room temperature to body temperature. During the in vitro degradation process, hydrogels demonstrated a more stable degradation rate. Both in vitro and in vivo cytotoxicity results showed that the materials had excellent biocompatibility due to less acidic products formation. In vitro cefazolin release profiles showed a stable release for 30 days. The hydrogel encapsulated cefazolin exhibited a good antibacterial effect. Based on these results, mPEG-PLCPHA can serve as an injectable depot gel for drug delivery. FROM THE CLINICAL EDITOR: In this study, thermosensitive hydrogel encapsulated cefazolin was found to exhibit good antibacterial effects with sustained levels for up to 30 days, enabling the development of an injectable depot gel for long-term drug delivery.


Subject(s)
Anhydrides/chemistry , Anti-Bacterial Agents/administration & dosage , Cefazolin/administration & dosage , Delayed-Action Preparations/chemistry , Lactic Acid/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Cefazolin/pharmacology , Cell Line , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Hydrogels/chemistry , Mice , Polyesters , Rats , Rats, Sprague-Dawley , Temperature
2.
Biomed Microdevices ; 15(5): 767-80, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23563756

ABSTRACT

The acinus-mimicking microfluidic chip, which simulates the in vivo condition of the liver, was developed and reported in this paper. The gradient microenvironment of the liver acinus is replicated within this proposed microfluidic chip. The advantage of this acinus-mimicking chip is capable of adjusting the concentration gradient in a relatively short period of time at around 10 s. At the same instance the non-linear concentration gradient can be presented in the various zones within this microfluidic chip. The other advantage of this proposed design is in the convenience of allowing the direct injection of the cells into the chip. The environment within the chip is multi-welled and gel-free with high cell density. The multi-row pillar microstructure located at the entrance of the top and bottom flow channels is designed to be able to balance the pressure of the perfusion medium. Through this mechanism the shear stress experienced by the cultured cells can be minimized to reduce the potential damage flow from the perfusion process. The fluorescence staining and the observations of the cell morphology verify the life and death of the cells. The shear stress experienced by the cells in the various zones within the chip can be effectively mapped. The serum glutamic oxaloacetic transaminase (SGOT) collected from the supernatants was used to determine the effects of the degassing process and the shear stress of the medium flow on the cultured cells.


Subject(s)
Liver/cytology , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Aspartate Aminotransferases/blood , Cell Line , Dimethylpolysiloxanes/chemistry , Equipment Design , Humans , Perfusion , Pressure , Shear Strength , Stress, Mechanical , Surface Properties
3.
Langmuir ; 29(51): 15981-91, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24328368

ABSTRACT

We reveal that a slight change in the functional group of the oligopeptide block incorporated into the poloxamer led to drastically different hierarchical assembly behavior and rheological properties in aqueous media. An oligo(L-Ala-co-L-Phe-co-ß-benzyl L-Asp)-poloxamer-oligo(ß-benzyl-L-Asp-co-L-Phe-co-L-Ala) block copolymer (OAF-(OAsp(Bzyl))-PLX-(OAsp(Bzyl))-OAF, denoted as polymer 1), which possessed benzyl group on the aspartate moiety of the peptide block, was synthesized through ring-opening polymerization. The benzyl group on aspartate was then converted to carboxylic acid to yield oligo(L-Ala-co-L-Phe-co-L-Asp)-poloxamer-oligo(L-Asp-co-L-Phe-co-L-Ala) (OAF-(OAsp)-PLX-(OAsp)-OAF, denoted as polymer 2). Characterization of the peptide secondary structure in aqueous media by circular dichroism revealed that the oligopeptide block in polymer 1 exhibited mainly an α-helix conformation, whereas that in polymer 2 adopted predominantly a ß-sheet conformation at room temperature. The segmental dynamics of the PEG in polymer 1 remained essentially unperturbed upon heating from 10 to 50 °C; by contrast, the PEG segmental motion in polymer 2 became more constrained above ca. 35 °C, indicating an obvious change in the chemical environment of the block chains. Meanwhile, the storage modulus of the polymer 2 solution underwent an abrupt increase across this temperature, and the solution turned into a gel. Wet-cell TEM observation revealed that polymer 1 self-organized to form microgel particles of several hundred nanometers in size. The microgel particle was retained as the characteristic morphological entity such that the PEG chains did not experience a significant change of their chemical environment upon heating. The hydrogel formed by polymer 2 was found to contain networks of nanofibrils, suggesting that the hydrogen bonding between the carboxylic acid groups led to an extensive stacking of the ß sheets along the fibril axis at elevated temperature. The in vitro cytotoxicity of the polymer 2 aqueous solution was found to be low in human retinal pigment epithelial cells. The low cytotoxicity coupled with the sol-gel transition makes the corresponding hydrogel a good candidate for biomedical applications.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrophobic and Hydrophilic Interactions , Oligopeptides/chemistry , Polymers/chemistry , Temperature , Cell Line , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/toxicity , Micelles , Models, Molecular , Polyethylene Glycols/chemistry , Protein Structure, Secondary , Rheology , Water/chemistry
4.
Cryobiology ; 66(3): 256-60, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23466687

ABSTRACT

Human embryonic stem cells (hESCs), due to their self-renewal capacity and pluripotency, are an important source of cells for regenerative medicine. The immediate obstacles that need to be addressed are the poor cell survival rate of hESCs and their cell quality after cryopreservation. In this study, we used the Cell Alive System (CAS) which combines a programmed freezer with an oscillating magnetic field to reduce cryo-injury during the freezing process. The hESC clumps suspended in freezing medium were divided into three groups: (i) cells frozen by a conventional freezing container, Mr. Frosty and kept in a -80 °C freezer (MF); (ii) cells frozen to -32 °C by CAS, and then transferred to a -80 °C freezer (CAS); (iii) cells frozen to -32 °C by CAS, and then transferred to a pre-cooled Mr. Frosty and kept in a -80 °C freezer (CAS-MF) for overnight. All cryovials were placed in liquid nitrogen for one week, and hESCs were then thawed and cultured on feeder for 7 days. The results of alkaline phosphatase (AP) staining showed that the attachment efficiency of the cells cryopreserved by CAS and CAS-MF was significantly higher (29.0% and 44.0%) than in the MF method (7.0%). Furthermore, we confirmed the cells cryopreserved using CAS-MF could be subcultured while expressing pluripotent markers, differentiate into three germ layers, and maintain a normal karyotype. These results demonstrate that the use of CAS-MF offers an efficient method of hESC banking.


Subject(s)
Cryopreservation/instrumentation , Embryonic Stem Cells/cytology , Magnetic Fields , Animals , Cell Adhesion , Cell Differentiation , Cell Line , Cell Survival , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/transplantation , Humans , Karyotype , Mice , Mice, SCID
5.
Sci Technol Adv Mater ; 14(5): 054403, 2013 Oct.
Article in English | MEDLINE | ID: mdl-27877607

ABSTRACT

The clinical demand for cartilage tissue engineering is potentially large for reconstruction defects resulting from congenital deformities or degenerative disease due to limited donor sites for autologous tissue and donor site morbidities. Cartilage tissue engineering has been successfully applied to the medical field: a scaffold pre-cultured with chondrocytes was used prior to implantation in an animal model. We have developed a surgical approach in which tissues are engineered by implantation with a vascular pedicle as an in vivo bioreactor in bone and adipose tissue engineering. Collagen type II, chitosan, poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were four commonly applied scaffolds in cartilage tissue engineering. To expand the application of the same animal model in cartilage tissue engineering, these four scaffolds were selected and compared for their ability to generate cartilage with chondrocytes in the same model with an in vivo bioreactor. Gene expression and immunohistochemistry staining methods were used to evaluate the chondrogenesis and osteogenesis of specimens. The result showed that the PLGA and PCL scaffolds exhibited better chondrogenesis than chitosan and type II collagen in the in vivo bioreactor. Among these four scaffolds, the PCL scaffold presented the most significant result of chondrogenesis embedded around the vascular pedicle in the long-term culture incubation phase.

6.
Polymers (Basel) ; 15(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37376231

ABSTRACT

Previously, we have successfully used noninvasive magnetic resonance (MR) and bioluminescence imaging to detect and monitor mPEG-poly(Ala) hydrogel-embedded MIN6 cells at the subcutaneous space for up to 64 days. In this study, we further explored the histological evolution of MIN6 cell grafts and correlated it with image findings. MIN6 cells were incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) and then 5 × 106 cells in the 100 µL hydrogel solution were injected subcutaneously into each nude mouse. Grafts were removed and examined the vascularization, cell growth and proliferation with anti-CD31, SMA, insulin and ki67 antibodies, respectively, at 8, 14, 21, 29 and 36 days after transplantation. All grafts were well-vascularized with prominent CD31 and SMA staining at all time points. Interestingly, insulin-positive cells and iron-positive cells were scattered in the graft at 8 and 14 days; while clusters of insulin-positive cells without iron-positive cells appeared in the grafts at 21 days and persisted thereafter, indicating neogrowth of MIN6 cells. Moreover, proliferating MIN6 cells with strong ki67 staining was observed in 21-, 29- and 36-day grafts. Our results indicate that the originally transplanted MIN6 cells proliferated from 21 days that presented distinctive bioluminescence and MR images.

7.
Pharmaceutics ; 15(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36839830

ABSTRACT

Vascularized composite allotransplantation is an emerging strategy for the reconstruction of unique defects such as amputated limbs that cannot be repaired with autologous tissues. In order to ensure the function of transplanted limbs, the functional recovery of the anastomosed peripheral nerves must be confirmed. The immunosuppressive drug, tacrolimus, has been reported to promote nerve recovery in animal models. However, its repeated dosing comes with risks of systemic malignancies and opportunistic infections. Therefore, drug delivery approaches for locally sustained release can be designed to overcome this issue and reduce systemic complications. We developed a mixed thermosensitive hydrogel (poloxamer (PLX)-poly(l-alanine-lysine with Pluronic F-127) for the time-dependent sustained release of tacrolimus in our previous study. In this study, we demonstrated that the hydrogel drug degraded in a sustained manner and locally released tacrolimus in mice over one month without affecting the systemic immunity. The hydrogel drug significantly improved the functional recovery of injured sciatic nerves as assessed using five-toe spread and video gait analysis. Neuroregeneration was validated in hydrogel-drug-treated mice using axonal analysis. The hydrogel drug did not cause adverse effects in the mouse model during long-term follow-up. The local injection of encapsulated-tacrolimus mixed thermosensitive hydrogel accelerated peripheral nerve recovery without systemic adverse effects.

8.
BMC Musculoskelet Disord ; 13: 198, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23072273

ABSTRACT

BACKGROUND: Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. METHODS: The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. RESULTS: The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). CONCLUSIONS: Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost.


Subject(s)
Bone Cements/chemical synthesis , Chemistry, Pharmaceutical/methods , Cold Temperature , Vertebroplasty/methods , Humans , Hypothermia/surgery , Polymethyl Methacrylate/administration & dosage , Polymethyl Methacrylate/chemical synthesis , Time Factors , Vertebroplasty/instrumentation
9.
Pharmaceutics ; 14(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35057064

ABSTRACT

Sobrerol, an oral mucolytic agent, in a recent study showed promise for treating multiple sclerosis. A human equivalent dose of 486 mg of sobrerol administered thrice daily (i.e., 1459 mg of daily dose) demonstrated the highest therapeutic efficacy for repurposing use, which also points out the poor compliance of administration. In this study, oral sustained-release pellets of sobrerol were successfully developed with evaluated manufacturing conditions and drug release kinetics. For design of the target drug product, we used a modeling and simulation approach to establish a predictive model of oral pharmacokinetic profile, by exploring the characteristics and correlations corresponding to the pharmacokinetics and pharmacodynamics of sobrerol, such as absorption lag time (0.18 h), time-scaling in vitro-in vivo correlation (tin-vitro = 0.494 tin-vivo - 0.0904), gastrointestinal transit time (8 h), minimum effective concentration (1.61 µg/mL), and duration of action (12.8 h). Results showed that the frequency of administration and the daily dose remarkably reduced by 33.3% (i.e., from thrice to twice daily) and 22.8%, respectively, which indicates that this prototype approach can be adopted for rapidly developing a modified-release dosage form of sobrerol, with improvement of compliance of administration and therapeutic efficacy.

10.
Gels ; 8(5)2022 May 02.
Article in English | MEDLINE | ID: mdl-35621580

ABSTRACT

The oral route is the most popular way of drug administration because of good patient compliance and ease of use. However, the oral delivery of peptides and proteins is difficult, mainly due to poor oral bioavailability. In past decades, researchers have developed several strategies to improve oral bioavailability by avoiding losing activity in the gastrointestinal (GI) tract and enhancing the intestinal permeability of these drugs. Methoxy poly(ethylene glycol)-poly(l-alanine) (mPEG-PA) is a thermo-sensitive hydrogel exhibiting a sol-to-gel phase transition property. This characteristic is appropriate for encapsulating peptide or protein drugs. To enhance the adhesion ability to intestinal mucus, a thermo-sensitive polymer, mPEG-PA, modified with charged amino acid lysine was developed. This positively charged material would help to bind the negatively charged mucin in mucus. The synthesis was conducted by individually synthesizing mPEG-PA and poly(l-lysine) (PLL) of different lengths via ring-opening polymerization. Then, mPEG-PA and PLL were combined using an NHS ester reaction to synthesize the triblock copolymer (mPEG-PA-PLL). Biocompatibility and the release of calcitonin from the synthesized hydrogel particles under different pH were examined. The initial data showed that the newly design material had a promising potential for the oral delivery of peptide drugs.

11.
Gels ; 7(4)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34842721

ABSTRACT

Tacrolimus (FK506) is a common immunosuppressive drug that is capable of suppressing acute rejection reactions, and is used to treat patients after allotransplantation. A stable and suitable serum concentration of tacrolimus is desirable for better therapeutic effects. However, daily drug administration via oral or injection routes is quite inconvenient and may encounter drug overdose or low patient compliance problems. In this research, our objective was to develop an extended delivery system using a thermosensitive hydrogel of poly ethylene glycol, D,L-lactide (L), and ϵ-caprolactone (CL) block copolymer, mPEG-PLCL, as a drug depot. The formulation of mPEG-PLCL and 0.5% PVP-dissolved tacrolimus was studied and the optimal formulation was obtained. The in vivo data showed that in situ gelling is achieved, a stable and sustained release of the drug within 30 days can be maintained, and the hydrogel was majorly degraded in that period. Moreover, improved allograft survival was achieved. Together, these data imply the potential of the current formulation for immunosuppressive treatments.

12.
J Biomed Mater Res A ; 109(12): 2516-2526, 2021 12.
Article in English | MEDLINE | ID: mdl-34190399

ABSTRACT

We developed an injectable hydrogel system with a sustained release of TGF-ß3 through growth factor-loaded microsphere to mimic the cartilage-like microenvironment. Poly(lactic-co-glycolic acid) (PLGA) microspheres incorporated in three dimensional (3D) scaffolds were chosen because of its regulatory approval, good biodegradability, and acting as carriers with sustained release behavior. We evaluated sustained release of TGF-ß3 by PLGA microspheres encapsulated in methoxy poly(ethylene glycol)-poly(alanine) (mPA) hydrogels and the resulting enhanced chondrogenic effects. We reported here the effect of the proposed system for sustained release of growth factors on chondrogenesis in cartilage regeneration. PLGA microspheres were used in our thermosensitive mPA hydrogel system with bovine serum albumin as a stabilizing and protecting agent for the emulsion and TGF-ß3 enabling sustained release. Gelation, structural properties, and in-vitro release of this composite, that is, microspheres in hydrogel, system were investigated. Using PLGA microspheres to carry growth factors could complement the mPA hydrogel's ability to provide an excellent 3D microenvironment for the promotion of chondrogenic phenotype as compared the systems using mPA hydrogel or microspheres alone. Our study demonstrated that this synthesized composite hydrogel system is capable of modulating the biosynthetic and differentiation activities of chondrocytes. The sustained release of TGF-ß3 in this novel hydrogel system could improve biomedical applicability of mPEG-polypeptide scaffolds. The distinctive local growth factor delivery system successfully combined the use of both polymers to be a suitable candidate for prolonged articular cartilage regeneration.


Subject(s)
Cartilage, Articular/drug effects , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/pharmacology , Animals , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Delayed-Action Preparations , Emulsions , Hydrogels , Microspheres , Polyesters , Polyethylene Glycols , Rats , Rats, Sprague-Dawley , Serum Albumin, Bovine , Tissue Scaffolds
13.
Polymers (Basel) ; 13(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805723

ABSTRACT

Recently, we demonstrated the feasibility of subcutaneous transplantation of MIN6 cells embedded in a scaffold with poly(ethylene glycol) methyl ether (mPEG)-poly(Ala) hydrogels. In this study, we further tracked these grafts using magnetic resonance (MR) and bioluminescence imaging. After being incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles and then mixed with mPEG-poly(Ala) hydrogels, MIN6 cells appeared as dark spots on MR scans. For in vivo experiments, we transfected MIN6 cells with luciferase and/or incubated them overnight with CSPIO overnight; 5 × 106 MIN6 cells embedded in mPEG-poly(Ala) hydrogels were transplanted into the subcutaneous space of each nude mouse. The graft of CSPIO-labeled MIN6 cells was visualized as a distinct hypointense area on MR images located at the implantation site before day 21. However, this area became hyperintense on MR scans for up to 64 days. In addition, positive bioluminescence images were also observed for up to 64 days after transplantation. The histology of removed grafts showed positive insulin and iron staining. These results indicate mPEG-poly(Ala) is a suitable scaffold for ß-cell encapsulation and transplantation. Moreover, MR and bioluminescence imaging are useful noninvasive tools for detecting and monitoring mPEG-poly(Ala) hydrogel-embedded MIN6 cells at a subcutaneous site.

14.
Bioorg Med Chem ; 18(14): 5241-7, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20584613

ABSTRACT

Tyrosinase is the first and rate limiting enzyme in the synthesis of melanin pigments for coloring hair, skin, and eyes. As reported in this study, a natural product, (-)-N-formylanonaine isolated from the leaves of Michelia alba D.C. (Magnolianceae), was found to inhibit mushroom tyrosinase with an IC50 of 74.3 microM and to have tyrosinase and melanin reducing activities in human epidermal melanocytes without apparent cytotoxicity to human cells, superior to the known tyrosinase inhibitors, such as kojic acid and 1-phenyl-2-thiourea (PTU). Based on homology modeling, the compound binds the active site by coordinating with two Cu2+ ions. In addition, the compound had antioxidation activities in tests for scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing power, and chelating metal ions. To our knowledge, this is the first study to reveal the bioactivities of (-)-N-formylanonaine from this plant species.


Subject(s)
Antioxidants/pharmacology , Aporphines/pharmacology , Magnolia/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Agaricales/enzymology , Antioxidants/chemistry , Antioxidants/isolation & purification , Aporphines/chemistry , Aporphines/isolation & purification , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Melanins/antagonists & inhibitors , Melanins/metabolism , Melanocytes/cytology , Melanocytes/drug effects , Melanocytes/enzymology , Models, Molecular , Monophenol Monooxygenase/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology
15.
J Mater Sci Mater Med ; 21(2): 725-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19823917

ABSTRACT

Cartilage extracellular matrix (ECM) is composed primarily of type II collagen (COL II) and large, networks of proteoglycans (PGs) that contain glycosaminoglycans such as hyaluronic acid (HA) and chondroitin sulfate (CS). Since cartilage shows little tendency for self-repair, injuries are kept unhealed for years and can eventually lead to further degeneration. During the past decades, many investigations have pursued techniques to stimulate articular cartilage repair or regeneration. The current study assessed the effects of exogenous glycosaminoglycans (GAGs) including CS-A, CS-B, CS-C, heparan sulfate and HA, administration on human chondrocytes in terms of proliferation and matrix synthesis, while the cells were seeded and grown on the genipin-crosslinked collagen type II (COL II) scaffold. DNA content was measured by Hoechst dye intercalation, matrix deposition was evaluated by DMMB dye. Expression of collagen II and aggrecan mRNAs was assessed by RT-PCR, followed by gel electrophoresis. In a 28-day in vitro culture, administration of 5 microg/ml CS-A, 50 microg/ml CS-B, 50 microg/ml CS-C, 5 microg/ml HS, and 500 kDa HA led to significant increase in biosynthesis rate of PGs. Gene expression of aggrecan and collagen II were upregulated by CS-A, CS-C and HA. These results showed considerable relevance of GAGs to the issue of in vitro/ex vivo neo-cartilage synthesis for tissue engineering and regenerative medical applications.


Subject(s)
Chondrocytes/physiology , Collagen Type II/chemistry , Collagen Type II/pharmacokinetics , Glycosaminoglycans/administration & dosage , Tissue Engineering/methods , Tissue Scaffolds , Biocompatible Materials/chemistry , Cell Culture Techniques/methods , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Humans , Materials Testing , Surface Properties
16.
Appl Biochem Biotechnol ; 191(1): 45-58, 2020 May.
Article in English | MEDLINE | ID: mdl-31940119

ABSTRACT

To reduce phenolic pollutants in the environment, many countries have imposed firm restrictions on industrial wastewater discharge. In addition, the current industrial process of phenolic resin production uses phenol and formaldehyde as the reactants to perform a polycondensation reaction. Due to the toxicity of formaldehyde and phenolic pollutants, the main purpose of this research was to design a green process using horseradish peroxidase (HRP) enzymatic polymerization to remove phenols and to produce formaldehyde-free phenolic polymers. In this study, the optimal reaction conditions, such as reaction temperature, pH, initial phenol concentration and initial ratio of phenol, and H2O2, were examined. Then, the parameters of the enzyme kinetics were determined. To solve the restriction of enzyme inactivation, several nonionic surfactants were selected to improve the phenol removal efficiency, and the optimal operation conditions in a surfactant-containing system were also confirmed. Importantly, the molecular weight of the synthetic phenolic polymers could be controlled by adjusting the ratio of phenol and H2O2. The content of biphenols in the products was almost undetectable. Collectively, a green chemistry process was proposed in this study and would benefit the treatment of phenol-containing wastewater and the production of formaldehyde-free phenolic resin in the future.


Subject(s)
Formaldehyde/chemistry , Phenol/chemistry , Phenols/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Water Pollutants, Chemical/chemistry , Horseradish Peroxidase/chemistry , Hydrogen Peroxide
17.
Cartilage ; 11(4): 490-499, 2020 10.
Article in English | MEDLINE | ID: mdl-30160166

ABSTRACT

OBJECTIVE: Quercetin (Que), a bioflavonoid, is both anti-inflammatory and antioxidative. Que has been used as an oral supplement for osteoarthritis (OA) with inconsistent findings because of its low bioavailability. We encapsulated Que in a mPEG-polypeptide thermogel to prolong its bioactivity. The efficacy of this formulation was evaluated in a posttraumatic OA rat model. DESIGN: Methoxy-poly(ethylene glycol)-l-poly(alanine) (mPEG-PA) polymer was synthesized and characterized in terms of cytotoxicity and release kinetics in vitro. At 12 weeks old, Sprague-Dawley rats underwent anterior cruciate ligament transection (ACLT). At 24 weeks post-operation, rats received either an intra-articular (IA) injection of saline, hydrogel, or hydrogel with Que (50 or 500 µg). Gait analysis was performed at pre-ACLT, pre-treatment, and at 4, 8, and 12 weeks post-treatment. At 12 weeks post-treatment, knee joints were collected for histopathological evaluation. RESULTS: In vitro studies showed that chondrocytes were viable after 72 hours of incubation with mPEG-PA, and the release of Que could be sustained for >28 days. Among all OA rats, the limb idleness index (LII) were significantly increased at 24 weeks post-ACLT. Rats that received hydrogel with Que (50 µg) showed the most reduction in LII at both 4 and 8 weeks post-treatment. The Osteoarthritis Research Society International score of rats received hydrogel with Que (50 µg) was significantly lower than the control group. All rats suffered from low-grade synovitis (Krenn score: 2-4). CONCLUSION: This study suggests that a sustained delivery of Que (50 µg) could provide symptom relief and also delay the progression of OA in the knee.


Subject(s)
Antioxidants/administration & dosage , Cartilage, Articular/drug effects , Hydrogels/administration & dosage , Osteoarthritis, Knee/drug therapy , Quercetin/administration & dosage , Animals , Anterior Cruciate Ligament Injuries/drug therapy , Chondrocytes/drug effects , Disease Models, Animal , Injections, Intra-Articular , Knee Joint/drug effects , Rats , Rats, Sprague-Dawley
18.
Biochem Biophys Res Commun ; 378(1): 112-7, 2009 Jan 02.
Article in English | MEDLINE | ID: mdl-19010306

ABSTRACT

Ex vivo generation of megakaryocytes from hematopoietic stem cells (HSCs) is crucial to HSC research and has important clinical potential for thrombocytopenia patients to rapid platelet reconstruction. In this study, factorial design and steepest ascent method were used to screen and optimize the effective cytokines (10.2 ng/ml TPO, 4.3 ng/ml IL-3, 15.0 ng/ml SCF, 5.6 ng/ml IL-6, 2.8 ng/ml FL, 2.8 ng/ml IL-9, and 2.8 ng/ml GM-CSF) in megakaryocyte induction medium that facilitate ex vivo megakaryopoiesis from CD34(+) cells. After induction, the maximum fold expansion for accumulated megakaryocytes was almost 5000-fold, and the induced megakaryocytes were characterized by analysis of gene expression, polyploidy and platelet activation ability. Furthermore, the combination of megakaryocyte induction medium and HSC expansion medium can induce and expand a large amount of functional megakaryocytes efficiently, and might be a promising source of megakaryocytes and platelets for cell therapy in the future.


Subject(s)
Antigens, CD34/metabolism , Cell Culture Techniques/methods , Cell Differentiation , Hematopoietic Stem Cells/metabolism , Megakaryocytes/cytology , Antigens, CD34/analysis , Culture Media, Serum-Free/chemistry , Culture Media, Serum-Free/pharmacology , Cytokines/pharmacology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Humans , Megakaryocytes/metabolism , Platelet Activation , Ploidies , Recombinant Proteins/pharmacology
19.
PLoS One ; 14(1): e0210285, 2019.
Article in English | MEDLINE | ID: mdl-30629660

ABSTRACT

The general concept of tissue engineering is to restore biological function by replacing defective tissues with implantable, biocompatible, and easily handleable cell-laden scaffolds. In this study, osteoinductive and osteoconductive super paramagnetic Fe3O4 nanoparticles (MNP) and hydroxyapatite (HAP) nanoparticles were incorporated into a di-block copolymer based thermo-responsive hydrogel, methoxy(polyethylene glycol)-polyalanine (mPA), at various concentrations to afford composite, injectable hydrogels. Incorporating nanoparticles into the thermo-responsive hydrogel increased the complex viscosity and decreased the gelation temperature of the starting hydrogel. Functionally, the integration of inorganic nanoparticles modulated bio-markers of bone differentiation and enhanced bone mineralization. Moreover, this study adopted the emerging method of using either a supplementary static magnetic field (SMF) or a moving magnetic field to elicit biological response. These results demonstrate that combining external (magnet) and internal (scaffold) magnetisms is a promising approach for bone regeneration.


Subject(s)
Bone Regeneration , Hydrogels , Tissue Engineering/methods , Bone and Bones , Cell Culture Techniques , Cell Proliferation , Durapatite , Gene Expression Profiling , Hydrogel, Polyethylene Glycol Dimethacrylate , Magnetics , Materials Testing , Nanoparticles , Osteoblasts/cytology , Osteoblasts/physiology , Osteogenesis , Peptides/chemistry , Tissue Engineering/instrumentation , Tissue Scaffolds
20.
Pharmaceutics ; 11(8)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416239

ABSTRACT

Tacrolimus is an immunosuppressive agent for acute rejection after allotransplantation. However, the low aqueous solubility of tacrolimus poses difficulties in formulating an injection dosage. Polypeptide thermosensitive hydrogels can maintain a sustained release depot to deliver tacrolimus. The copolymers, which consist of poloxamer and poly(l-alanine) with l-lysine segments at both ends (P-Lys-Ala-PLX), are able to carry tacrolimus in an in situ gelled form with acceptable biocompatibility, biodegradability, and low gelling concentrations from 3 to 7 wt %. By adding Pluronic F-127 to formulate a mixed hydrogel system, the drug release rate can be adjusted to maintain suitable drug levels in animals with transplants. Under this formulation, the in vitro release of tacrolimus was stable for more than 100 days, while in vivo release of tacrolimus in mouse model showed that rejection from skin allotransplantation was prevented for at least three weeks with one single administration. Using these mixed hydrogel systems for sustaining delivery of tacrolimus demonstrates advancement in immunosuppressive therapy.

SELECTION OF CITATIONS
SEARCH DETAIL