Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 486
Filter
Add more filters

Publication year range
1.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295882

ABSTRACT

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Subject(s)
Asthma , Hypersensitivity , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Hypersensitivity/genetics , Asthma/etiology , Genomics , Proteomics , Metabolomics
2.
Respir Res ; 25(1): 204, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730440

ABSTRACT

BACKGROUND: The impact of cigarette smoke (CS) on lung diseases and the role of microbiome dysbiosis in chronic obstructive pulmonary disease (COPD) have been previously reported; however, the relationships remain unclear. METHODS: Our research examined the effects of 20-week cigarette smoke (CS) exposure on the lung and intestinal microbiomes in C57BL/6JNarl mice, alongside a comparison with COPD patients' intestinal microbiome data from a public dataset. RESULTS: The study found that CS exposure significantly decreased forced vital capacity (FVC), thickened airway walls, and induced emphysema. Increased lung damage was observed along with higher lung keratinocyte chemoattractant (KC) levels by CS exposure. Lung microbiome analysis revealed a rise in Actinobacteriota, while intestinal microbiome showed significant diversity changes, indicating dysbiosis. Principal coordinate analysis highlighted distinct intestinal microbiome compositions between control and CS-exposed groups. In the intestinal microbiome, notable decreases in Patescibacteria, Campilobacterota, Defferibacterota, Actinobacteriota, and Desulfobacterota were observed. We also identified correlations between lung function and dysbiosis in both lung and intestinal microbiomes. Lung interleukins, interferon-É£, KC, and 8-isoprostane levels were linked to lung microbiome dysbiosis. Notably, dysbiosis patterns in CS-exposed mice were similar to those in COPD patients, particularly of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 4 patients. This suggests a systemic impact of CS exposure. CONCLUSION: In summary, CS exposure induces significant dysbiosis in lung and intestinal microbiomes, correlating with lung function decline and injury. These results align with changes in COPD patients, underscoring the important role of microbiome in smoke-related lung diseases.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Lung , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/microbiology , Gastrointestinal Microbiome/physiology , Mice , Humans , Male , Lung/microbiology , Female , Middle Aged , Aged , Smoke/adverse effects
3.
Allergy ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563695

ABSTRACT

The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.

4.
Allergy ; 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783343

ABSTRACT

To inform the clinical practice guidelines' recommendations developed by the European Academy of Allergy and Clinical Immunology systematic reviews (SR) assessed using GRADE on the impact of environmental tobacco smoke (ETS) and active smoking on the risk of new-onset asthma/recurrent wheezing (RW)/low lung function (LF), and on asthma-related outcomes. Only longitudinal studies were included, almost all on combustion cigarettes, only one assessing e-cigarettes and LF. According to the first SR (67 studies), prenatal ETS increases the risk of RW (moderate certainty evidence) and may increase the risk of new-onset asthma and of low LF (low certainty evidence). Postnatal ETS increases the risk of new-onset asthma and of RW (moderate certainty evidence) and may impact LF (low certainty evidence). Combined in utero and postnatal ETS may increase the risk of new-onset asthma (low certainty evidence) and increases the risk of RW (moderate certainty evidence). According to the second SR (24 studies), ETS increases the risk of severe asthma exacerbations and impairs asthma control and LF (moderate certainty evidence). According to the third SR (25 studies), active smoking increases the risk of severe asthma exacerbations and of suboptimal asthma control (moderate certainty evidence) and may impact asthma-related quality-of-life and LF (low certainty evidence).

5.
Ann Allergy Asthma Immunol ; 132(4): 457-462.e2, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37977324

ABSTRACT

BACKGROUND: Although various monoclonal antibodies have been used as add-on therapy for severe eosinophilic asthma (SEA), to the best of our knowledge, no direct head-to-head comparative study has evaluated their efficacy. OBJECTIVE: To compare the efficacy of reslizumab, mepolizumab, and dupilumab in patients with SEA. METHODS: This was a multicenter, prospective observational study in patients with SEA who had received 1 of these biologic agents for at least 6 months. Cox proportional hazard models were used to compare the risk of the first exacerbation event, adjusting for sputum or blood eosinophils and common asthma-related covariates. The annual exacerbation rate was analyzed using a negative binomial model, and a mixed-effect model was used to analyze changes in forced expiratory volume in 1 second and asthma control test score over time. RESULTS: A total of 141 patients with SEA were included in the analysis; 71 (50%) received dupilumab; 40 (28%) received reslizumab, and 30 (21%) received mepolizumab. During the 12-month follow-up, 27.5%, 43.3%, and 38.0% of patients in the reslizumab, mepolizumab, and dupilumab groups, respectively, experienced at least 1 exacerbation. However, after adjusting for confounding factors, the dupilumab and mepolizumab groups showed similar outcomes in time-to-first exacerbation, exacerbation rate, forced expiratory volume in 1 second, and asthma control test score to those of the reslizumab group. CONCLUSION: In patients with SEA, treatment with reslizumab, mepolizumab, and dupilumab resulted in comparable clinical outcomes within a 12-month period. TRIAL REGISTRATION: The cohort protocol was sanctioned by the Institutional Review Board of each study center (clinicaltrial.gov identifier NCT05164939).


Subject(s)
Anti-Asthmatic Agents , Asthma , Biological Products , Pulmonary Eosinophilia , Humans , Prospective Studies , Eosinophils , Antibodies, Monoclonal/therapeutic use , Pulmonary Eosinophilia/drug therapy , Biological Products/therapeutic use , Anti-Asthmatic Agents/therapeutic use
6.
Environ Sci Technol ; 58(20): 8771-8782, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728551

ABSTRACT

This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.


Subject(s)
Air Pollutants , Air Pollution , Gastrointestinal Microbiome , Humans , Male , London , Female , Middle Aged , Cross-Over Studies , Traffic-Related Pollution , Nitrogen Dioxide
7.
Respirology ; 29(6): 479-488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494828

ABSTRACT

BACKGROUND AND OBJECTIVE: Nicotine metabolic ratio (NMR) has been associated with nicotine metabolism and smoking characteristics. However, there are few studies on the potential association between NMR and smoking cessation efficacy in smokers with chronic obstructive pulmonary disease (COPD) in China or elsewhere. METHODS: This study was a stratified block randomized controlled trial for smoking cessation in Chinese smokers with COPD. NMR was used as a stratification factor; slow metabolizers were defined as those with NMR <0.31, and normal metabolizers as those with NMR ≥0.31. Participants were randomly assigned to the varenicline or bupropion group. Follow-up visits were conducted at 1, 2, 4, 6, 9, 12 and 24 weeks. RESULTS: Two hundred twenty-four participants were recruited and analysed from February 2019 to June 2022. In normal metabolizers, the 9-12 weeks continuous abstinence rate of varenicline (43.1%) was higher than in bupropion (23.5%) (OR = 2.47, 95% CI 1.05-5.78, p = 0.038). There was no significant difference in abstinence rates between treatment groups in slow metabolizers (54.1% vs. 45.9%, OR = 1.39, 95% CI 0.68-2.83, p = 0.366). For slow metabolizers, the total score of side effects in the varenicline group was significantly higher than the bupropion group (p = 0.048), while there was no significant difference in side effects between groups for normal metabolizers (p = 0.360). CONCLUSION: Varenicline showed better efficacy than bupropion in normal metabolizers, and bupropion showed equivalent efficacy in slow metabolizers with less side effects. According to our study, NMR provides a better justification for both scientific research and tailoring optimal pharmacotherapy for smoking cessation among smokers in COPD.


Subject(s)
Bupropion , Nicotine , Pulmonary Disease, Chronic Obstructive , Smoking Cessation Agents , Smoking Cessation , Varenicline , Humans , Varenicline/therapeutic use , Bupropion/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Male , Female , Smoking Cessation/methods , Middle Aged , Smoking Cessation Agents/therapeutic use , Treatment Outcome , Aged , China/epidemiology , Smokers
8.
Lung ; 202(1): 17-24, 2024 02.
Article in English | MEDLINE | ID: mdl-38135857

ABSTRACT

Chronic cough is characterized by a state of cough hypersensitivity. We analyze the process of transpiration, by which water appears to evaporate from laryngeal and tracheal mucus as from the surface of a leaf, as a potential cause of cough hypersensitivity. In this process, osmotic pressure differences form across mucus, pulling water toward the air, and preventing mucus dehydration. Recent research suggests that these osmotic differences grow on encounter with dry and dirty air, amplifying pressure on upper airway epithelia and initiating a cascade of biophysical events that potentially elevate levels of ATP, promote inflammation and acidity, threaten water condensation, and diminish mucus water permeability. Among consequences of this inflammatory cascade is tendency to cough. Studies of isotonic, hypotonic, and hypertonic aerosols targeted to the upper airways give insights to the nature of mucus transpiration and its relationship to a water layer that forms by condensation in the upper airways on exhalation. They also suggest that, while hypertonic NaCl and mannitol may provoke cough and bronchoconstriction, hypertonic salts with permeating anions and non-permeating cations may relieve these same upper respiratory dysfunctions. Understanding of mucus transpiration and its role in cough hypersensitivity can lead to new treatment modalities for chronic cough and other airway dysfunctions promoted by the breathing of dry and dirty air.


Subject(s)
Chronic Cough , Hypersensitivity , Humans , Respiratory Aerosols and Droplets , Cough/etiology , Mucus , Water
9.
Lung ; 202(1): 41-51, 2024 02.
Article in English | MEDLINE | ID: mdl-38252134

ABSTRACT

BACKGROUND: The determinants linked to the short- and long-term improvement in lung function in patients with severe eosinophilic asthma (SEA) on biological treatment (BioT) remain elusive. OBJECTIVE: We sought to identify the predictors of early and late lung function improvement in patients with SEA after BioT. METHODS: 140 adult patients with SEA who received mepolizumab, dupilumab, or reslizumab were followed up for 6 months to evaluate improvement in forced expiratory volume in one second (FEV1). Logistic regression was used to determine the association between potential prognostic factors and improved lung function at 1 and 6 months of treatment. RESULTS: More than a third of patients with SEA using BioT showed early and sustained improvements in FEV1 after 1 month. A significant association was found between low baseline FEV1 and high blood eosinophil count and sustained FEV1 improvement after 1 month (0.54 [0.37-0.79] and 1.88 [1.28-2.97] odds ratios and 95% confidence interval, respectively). Meanwhile, among patients who did not experience FEV1 improvement after 1 month, 39% exhibited improvement at 6 months follow-up. A high ACT score measured at this visit was the most reliable predictor of late response after 6 months of treatment (OR and 95% CI 1.75 [1.09-2.98]). CONCLUSION: Factors predicting the efficacy of biological agents that improve lung function in SEA vary according to the stage of response.


Subject(s)
Anti-Asthmatic Agents , Asthma , Biological Products , Pulmonary Eosinophilia , Adult , Humans , Anti-Asthmatic Agents/therapeutic use , Biological Products/therapeutic use , Eosinophils , Pulmonary Eosinophilia/drug therapy , Lung
10.
Lung ; 202(2): 97-106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411774

ABSTRACT

PURPOSE: Codeine is a narcotic antitussive often considered for managing patients with refractory or unexplained chronic cough. This study aimed to evaluate the proportion and characteristics of patients who responded to codeine treatment in real-world practice. METHODS: Data from the Korean Chronic Cough Registry, a multicenter prospective cohort study, were analyzed. Physicians assessed the response to codeine based on the timing and degree of improvement after treatment initiation. Follow-up assessments included the Leicester Cough Questionnaire and cough severity visual analog scale at six months. In a subset of subjects, objective cough frequency was evaluated following the initiation of codeine treatment. RESULTS: Of 305 patients, 124 (40.7%) responded to treatments based on anatomic diagnostic protocols, while 181 (59.3%) remained unexplained or refractory to etiological treatments. Fifty-one subjects (16.7%) were classified as codeine treatment responders (those showing a rapid and clear response), 57 (18.7%) as partial responders, and 62 (20.3%) as non-responders. Codeine responders showed rapid improvement in objective cough frequency and severity scores within a week of the treatment. At 6 months, responders showed significantly improved scores in cough scores, compared to non-responders. Several baseline parameters were associated with a more favorable treatment response, including older age, non-productive cough, and the absence of heartburn. CONCLUSIONS: Approximately 60% of chronic cough patients in specialist clinics may require antitussive drugs. While codeine benefits some, only a limited proportion (about 20%) of patients may experience rapid and significant improvement. This underscores the urgent need for new antitussive drugs to address these unmet clinical needs.


Subject(s)
Antitussive Agents , Codeine , Humans , Codeine/therapeutic use , Antitussive Agents/therapeutic use , Prospective Studies , Chronic Cough , Cohort Studies , Cough/drug therapy , Cough/etiology
11.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37163754

ABSTRACT

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Subject(s)
Asthma , Hypersensitivity , Microbiota , Female , Male , Humans , Transcriptome , Respiratory Sounds/genetics , Asthma/genetics , Microbiota/genetics
12.
J Allergy Clin Immunol ; 152(1): 117-125, 2023 07.
Article in English | MEDLINE | ID: mdl-36918039

ABSTRACT

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.


Subject(s)
Asthma , Sputum , Humans , Sputum/metabolism , Lipidomics , Proteomics/methods , Cross-Sectional Studies , Prospective Studies , Lipids
13.
Mol Med ; 29(1): 159, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996782

ABSTRACT

BACKGROUND: Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS: AECII MLE-12 cells were exposed to 0, 0.1, or 1 µg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS: We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS: We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.


Subject(s)
Hippo Signaling Pathway , Respiratory Distress Syndrome , Animals , Humans , Mice , Alveolar Epithelial Cells/metabolism , Cell Differentiation , Doublecortin-Like Kinases , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
14.
Thorax ; 78(7): 661-673, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36344253

ABSTRACT

BACKGROUND: Severe neutrophilic asthma is resistant to treatment with glucocorticoids. The immunomodulatory protein macrophage migration inhibitory factor (MIF) promotes neutrophil recruitment to the lung and antagonises responses to glucocorticoids. We hypothesised that MIF promotes glucocorticoid resistance of neutrophilic inflammation in severe asthma. METHODS: We examined whether sputum MIF protein correlated with clinical and molecular characteristics of severe neutrophilic asthma in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. We also investigated whether MIF regulates neutrophilic inflammation and glucocorticoid responsiveness in a murine model of severe asthma in vivo. RESULTS: MIF protein levels positively correlated with the number of exacerbations in the previous year, sputum neutrophils and oral corticosteroid use across all U-BIOPRED subjects. Further analysis of MIF protein expression according to U-BIOPRED-defined transcriptomic-associated clusters (TACs) revealed increased MIF protein and a corresponding decrease in annexin-A1 protein in TAC2, which is most closely associated with airway neutrophilia and NLRP3 inflammasome activation. In a murine model of severe asthma, treatment with the MIF antagonist ISO-1 significantly inhibited neutrophilic inflammation and increased glucocorticoid responsiveness. Coimmunoprecipitation studies using lung tissue lysates demonstrated that MIF directly interacts with and cleaves annexin-A1, potentially reducing its biological activity. CONCLUSION: Our data suggest that MIF promotes glucocorticoid-resistance of neutrophilic inflammation by reducing the biological activity of annexin-A1, a potent glucocorticoid-regulated protein that inhibits neutrophil accumulation at sites of inflammation. This represents a previously unrecognised role for MIF in the regulation of inflammation and points to MIF as a potential therapeutic target for the management of severe neutrophilic asthma.


Subject(s)
Asthma , Macrophage Migration-Inhibitory Factors , Humans , Animals , Mice , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/therapeutic use , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Disease Models, Animal , Asthma/drug therapy , Asthma/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Annexins/metabolism , Annexins/therapeutic use
15.
Thorax ; 78(4): 335-343, 2023 04.
Article in English | MEDLINE | ID: mdl-36598042

ABSTRACT

RATIONALE: Severe asthma and chronic obstructive pulmonary disease (COPD) share common pathophysiological traits such as relative corticosteroid insensitivity. We recently published three transcriptome-associated clusters (TACs) using hierarchical analysis of the sputum transcriptome in asthmatics from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort comprising one Th2-high inflammatory signature (TAC1) and two Th2-low signatures (TAC2 and TAC3). OBJECTIVE: We examined whether gene expression signatures obtained in asthma can be used to identify the subgroup of patients with COPD with steroid sensitivity. METHODS: Using gene set variation analysis, we examined the distribution and enrichment scores (ES) of the 3 TACs in the transcriptome of bronchial biopsies from 46 patients who participated in the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease COPD study that received 30 months of treatment with inhaled corticosteroids (ICS) with and without an added long-acting ß-agonist (LABA). The identified signatures were then associated with longitudinal clinical variables after treatment. Differential gene expression and cellular convolution were used to define key regulated genes and cell types. MEASUREMENTS AND MAIN RESULTS: Bronchial biopsies in patients with COPD at baseline showed a wide range of expression of the 3 TAC signatures. After ICS±LABA treatment, the ES of TAC1 was significantly reduced at 30 months, but those of TAC2 and TAC3 were unaffected. A corticosteroid-sensitive TAC1 signature was developed from the TAC1 ICS-responsive genes. This signature consisted of mast cell-specific genes identified by single-cell RNA-sequencing and positively correlated with bronchial biopsy mast cell numbers following ICS±LABA. Baseline levels of gene transcription correlated with the change in RV/TLC %predicted following 30-month ICS±LABA. CONCLUSION: Sputum-derived transcriptomic signatures from an asthma cohort can be recapitulated in bronchial biopsies of patients with COPD and identified a signature of airway mast cells as a predictor of corticosteroid responsiveness.


Subject(s)
Adrenal Cortex Hormones , Asthma , Mast Cells , Pulmonary Disease, Chronic Obstructive , Th2 Cells , Humans , Administration, Inhalation , Adrenal Cortex Hormones/therapeutic use , Adrenergic beta-2 Receptor Agonists/therapeutic use , Asthma/drug therapy , Asthma/genetics , Biomarkers , Bronchodilator Agents/therapeutic use , Drug Therapy, Combination , Mast Cells/drug effects , Mast Cells/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , Th2 Cells/drug effects , Th2 Cells/metabolism
16.
Eur Respir J ; 61(4)2023 04.
Article in English | MEDLINE | ID: mdl-36549712

ABSTRACT

BACKGROUND: Valid outcome measures are imperative to evaluate treatment response, yet the suitability of existing end-points for severe asthma is unclear. This review aimed to identify outcome measures for severe asthma and appraise the quality of their measurement properties. METHODS: A literature search was performed to identify "candidate" outcome measures published between 2018 and 2020. A modified Delphi exercise was conducted to select "key" outcome measures within healthcare professional, patient, pharmaceutical and regulatory stakeholder groups. Initial validation studies for "key" measures were rated against modified quality criteria from COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). The evidence was discussed at multi-stakeholder meetings to ratify "priority" outcome measures. Subsequently, four bibliographic databases were searched from inception to 20 July 2020 to identify development and validation studies for these end-points. Two reviewers screened records, extracted data, assessed their methodological quality and graded the evidence according to COSMIN. RESULTS: 96 outcome measures were identified as "candidates", 55 as "key" and 24 as "priority" for severe asthma, including clinical, healthcare utilisation, quality of life, asthma control and composite. 32 studies reported measurement properties of 17 "priority" end-points from the latter three domains. Only the Severe Asthma Questionnaire and Childhood Asthma Control Test were developed with input from severe asthma patients. The certainty of evidence was "low" to "very low" for most "priority" end-points across all measurement properties and none fulfilled all quality standards. CONCLUSIONS: Only two outcome measures had robust developmental data for severe asthma. This review informed development of core outcome measures sets for severe asthma.


Subject(s)
Asthma , Quality of Life , Humans , Child , Asthma/drug therapy , Outcome Assessment, Health Care , Delivery of Health Care , Surveys and Questionnaires
17.
Eur Respir J ; 61(4)2023 04.
Article in English | MEDLINE | ID: mdl-36229046

ABSTRACT

BACKGROUND: Effectiveness studies with biological therapies for asthma lack standardised outcome measures. The COMSA (Core Outcome Measures sets for paediatric and adult Severe Asthma) Working Group sought to develop Core Outcome Measures (COM) sets to facilitate better synthesis of data and appraisal of biologics in paediatric and adult asthma clinical studies. METHODS: COMSA utilised a multi-stakeholder consensus process among patients with severe asthma, adult and paediatric clinicians, pharmaceutical representatives, and health regulators from across Europe. Evidence included a systematic review of development, validity and reliability of selected outcome measures plus a narrative review and a pan-European survey to better understand patients' and carers' views about outcome measures. It was discussed using a modified GRADE (Grading of Recommendations Assessment, Development and Evaluation) Evidence to Decision framework. Anonymous voting was conducted using predefined consensus criteria. RESULTS: Both adult and paediatric COM sets include forced expiratory volume in 1 s (FEV1) as z-scores, annual frequency of severe exacerbations and maintenance oral corticosteroid use. Additionally, the paediatric COM set includes the Paediatric Asthma Quality of Life Questionnaire and Asthma Control Test or Childhood Asthma Control Test, while the adult COM set includes the Severe Asthma Questionnaire and Asthma Control Questionnaire-6 (symptoms and rescue medication use reported separately). CONCLUSIONS: This patient-centred collaboration has produced two COM sets for paediatric and adult severe asthma. It is expected that they will inform the methodology of future clinical trials, enhance comparability of efficacy and effectiveness of biological therapies, and help assess their socioeconomic value. COMSA will inform definitions of non-response and response to biological therapy for severe asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma , Child , Humans , Adult , Quality of Life , Reproducibility of Results , Disease Progression , Asthma/drug therapy , Outcome Assessment, Health Care , Anti-Asthmatic Agents/therapeutic use
18.
Respir Res ; 24(1): 319, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110986

ABSTRACT

BACKGROUND: Mitochondrial dysfunction and lung cellular senescence are significant features involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) stands as the primary contributing factor to COPD. This study examined mitochondrial dynamics, mitophagy and lung cellular senescence in COPD patients and investigated the effects of modulation of mitochondrial fusion [mitofusin2 (MFN2) and Optic atrophy 1 (OPA1)] on CS extract (CSE)-induced lung cellular senescence. METHODS: Senescence-associated secretory phenotype (SASP) component mRNAs (IL-1ß, IL-6, CXCL1 and CXCL8), mitochondrial morphology, mitophagy and mitochondria-related proteins (including phosphorylated-DRP1(p-DRP1), DRP1, MFF, MNF2, OPA1, PINK1, PARK2, SQSTM1/p62 and LC3b) and senescence-related proteins (including P16, H2A.X and Klotho) were measured in lung tissues or primary alveolar type II (ATII) cells of non-smokers, smokers and COPD patients. Alveolar epithelial (A549) cells were exposed to CSE with either pharmacologic inducer (leflunomide and BGP15) or genetic induction of MFN2 and OPA1 respectively. RESULTS: There were increases in mitochondrial number, and decreases in mitochondrial size and activity in lung tissues from COPD patients. SASP-related mRNAs, DRP1 phosphorylation, DRP1, MFF, PARK2, SQSTM1/p62, LC3B II/LC3B I, P16 and H2A.X protein levels were increased, while MFN2, OPA1, PINK1 and Klotho protein levels were decreased in lung tissues from COPD patients. Some similar results were identified in primary ATII cells of COPD patients. CSE induced increases in oxidative stress, SASP-related mRNAs, mitochondrial damage and dysfunction, mitophagy and cellular senescence in A549 cells, which were ameliorated by both pharmacological inducers and genetic overexpression of MFN2 and OPA1. CONCLUSIONS: Impaired mitochondrial fusion, enhanced mitophagy and lung cellular senescence are observed in the lung of COPD patients. Up-regulation of MFN2 and OPA1 attenuates oxidative stress, mitophagy and lung cellular senescence, offering potential innovative therapeutic targets for COPD therapy.


Subject(s)
GTP Phosphohydrolases , Mitochondrial Dynamics , Mitochondrial Proteins , Pulmonary Disease, Chronic Obstructive , Humans , Cellular Senescence , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Lung/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nicotiana , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Sequestosome-1 Protein/metabolism
19.
Allergy ; 78(1): 156-167, 2023 01.
Article in English | MEDLINE | ID: mdl-35986608

ABSTRACT

BACKGROUND: Interleukin (IL)-33 is an upstream regulator of type 2 (T2) eosinophilic inflammation and has been proposed as a key driver of some asthma phenotypes. OBJECTIVE: To derive gene signatures from in vitro studies of IL-33-stimulated cells and use these to determine IL-33-associated enrichment patterns in asthma. METHODS: Signatures downstream of IL-33 stimulation were derived from our in vitro study of human mast cells and from public datasets of in vitro stimulated human basophils, type 2 innate lymphoid cells (ILC2), regulatory T cells (Treg) and endothelial cells. Gene Set Variation Analysis (GSVA) was used to probe U-BIOPRED and ADEPT sputum transcriptomics to determine enrichment scores (ES) for each signature according to asthma severity, sputum granulocyte status and previously defined molecular phenotypes. RESULTS: IL-33-activated gene signatures were cell-specific with little gene overlap. Individual signatures, however, were associated with similar signalling pathways (TNF, NF-κB, IL-17 and JAK/STAT signalling) and immune cell differentiation pathways (Th17, Th1 and Th2 differentiation). ES for IL-33-activated gene signatures were significantly enriched in asthmatic sputum, particularly in patients with neutrophilic and mixed granulocytic phenotypes. IL-33 mRNA expression was not elevated in asthma whereas the expression of mRNA for IL1RL1, the IL-33 receptor, was up-regulated in the sputum of severe eosinophilic asthma. The mRNA expression for IL1RAP, the IL1RL1 co-receptor, was greatest in severe neutrophilic and mixed granulocytic asthma. CONCLUSIONS: IL-33-activated gene signatures are elevated in neutrophilic and mixed granulocytic asthma corresponding with IL1RAP co-receptor expression. This suggests incorporating T2-low asthma in anti-IL-33 trials.


Subject(s)
Asthma , Immunity, Innate , Interleukin-1 Receptor Accessory Protein , Humans , Asthma/diagnosis , Asthma/genetics , Endothelial Cells/metabolism , Interleukin-1 Receptor Accessory Protein/metabolism , Lymphocytes/metabolism , RNA, Messenger/metabolism , Sputum , Th2 Cells
20.
Allergy ; 78(11): 2906-2920, 2023 11.
Article in English | MEDLINE | ID: mdl-37287344

ABSTRACT

BACKGROUND: Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. METHODS: Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data were analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). RESULTS: α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and ß-diversities were stable at one year. CONCLUSIONS: Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation.


Subject(s)
Asthma , Haemophilus influenzae , Humans , Moraxella catarrhalis , Sputum/microbiology , Inflammasomes , Immunity, Innate , Neutrophil Activation , Lymphocytes , Asthma/diagnosis , Asthma/microbiology , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL