Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Publication year range
1.
Immunity ; 44(3): 698-711, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26982367

ABSTRACT

Microsatellite instability in colorectal cancer predicts favorable outcomes. However, the mechanistic relationship between microsatellite instability, tumor-infiltrating immune cells, Immunoscore, and their impact on patient survival remains to be elucidated. We found significant differences in mutational patterns, chromosomal instability, and gene expression that correlated with patient microsatellite instability status. A prominent immune gene expression was observed in microsatellite-instable (MSI) tumors, as well as in a subgroup of microsatellite-stable (MSS) tumors. MSI tumors had increased frameshift mutations, showed genetic evidence of immunoediting, had higher densities of Th1, effector-memory T cells, in situ proliferating T cells, and inhibitory PD1-PDL1 cells, had high Immunoscores, and were infiltrated with mutation-specific cytotoxic T cells. Multivariate analysis revealed that Immunoscore was superior to microsatellite instability in predicting patients' disease-specific recurrence and survival. These findings indicate that assessment of the immune status via Immunoscore provides a potent indicator of tumor recurrence beyond microsatellite-instability staging that could be an important guide for immunotherapy strategies.


Subject(s)
Colorectal Neoplasms/diagnosis , Immunoassay/methods , Pathology, Molecular/methods , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Aged , Aged, 80 and over , Cells, Cultured , Colorectal Neoplasms/mortality , Cytotoxicity Tests, Immunologic , DNA Mutational Analysis , Female , Frameshift Mutation/genetics , Humans , Immunologic Memory , Male , Microsatellite Instability , Microsatellite Repeats , Predictive Value of Tests , Prognosis , Survival Analysis , Transcriptome
2.
Immunity ; 43(4): 631-3, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488814

ABSTRACT

Predicting cancer patients' response to therapy is essential for curing disease and improving quality of life. Garraway and colleagues demonstrate that the frequency and number of neoantigens, non-synonymous mutations, and adaptive immune genes, but not the assessment of individual recurrent neoantigens or mutations, predicts patient responses to immunotherapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm/genetics , Biomarkers, Pharmacological , CTLA-4 Antigen/antagonists & inhibitors , Melanoma/drug therapy , Melanoma/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Female , Humans , Male
3.
Breast Cancer Res ; 25(1): 110, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773134

ABSTRACT

BACKGROUND: Gene expression (GEX) signatures in breast cancer provide prognostic information, but little is known about their predictive value for tamoxifen treatment. We examined the tamoxifen-predictive value and prognostic effects of different GEX signatures in premenopausal women with early breast cancer. METHODS: RNA from formalin-fixed paraffin-embedded tumor tissue from premenopausal women randomized between two years of tamoxifen treatment and no systemic treatment was extracted and successfully subjected to GEX profiling (n = 437, NanoString Breast Cancer 360™ panel). The median follow-up periods for a recurrence-free interval (RFi) and overall survival (OS) were 28 and 33 years, respectively. Associations between GEX signatures and tamoxifen effect were assessed in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+ /HER2-) tumors using Kaplan-Meier estimates and Cox regression. The prognostic effects of GEX signatures were studied in the entire cohort. False discovery rate adjustments (q-values) were applied to account for multiple hypothesis testing. RESULTS: In patients with ER+/HER2- tumors, FOXA1 expression below the median was associated with an improved effect of tamoxifen after 10 years with regard to RFi (hazard ratio [HR]FOXA1(high) = 1.04, 95% CI = 0.61-1.76, HRFOXA1(low) = 0.30, 95% CI = 0.14-0.67, qinteraction = 0.0013), and a resembling trend was observed for AR (HRAR(high) = 1.15, 95% CI = 0.60-2.20, HRAR(low) = 0.42, 95% CI = 0.24-0.75, qinteraction = 0.87). Similar patterns were observed for OS. Tamoxifen was in the same subgroup most beneficial for RFi in patients with low ESR1 expression (HRRFi ESR1(high) = 0.76, 95% CI = 0.43-1.35, HRRFi, ESR1(low) = 0.56, 95% CI = 0.29-1.06, qinteraction = 0.37). Irrespective of molecular subtype, higher levels of ESR1, Mast cells, and PGR on a continuous scale were correlated with improved 10 years RFi (HRESR1 = 0.80, 95% CI = 0.69-0.92, q = 0.005; HRMast cells = 0.74, 95% CI = 0.65-0.85, q < 0.0001; and HRPGR = 0.78, 95% CI = 0.68-0.89, q = 0.002). For BC proliferation and Hypoxia, higher scores associated with worse outcomes (HRBCproliferation = 1.54, 95% CI = 1.33-1.79, q < 0.0001; HRHypoxia = 1.38, 95% CI = 1.20-1.58, q < 0.0001). The results were similar for OS. CONCLUSIONS: Expression of FOXA1 is a promising predictive biomarker for tamoxifen effect in ER+/HER2- premenopausal breast cancer. In addition, each of the signatures BC proliferation, Hypoxia, Mast cells, and the GEX of AR, ESR1, and PGR had prognostic value, also after adjusting for established prognostic factors. Trial registration This trial was retrospectively registered in the ISRCTN database the 6th of December 2019, trial ID: https://clinicaltrials.gov/ct2/show/ISRCTN12474687 .


Subject(s)
Breast Neoplasms , Tamoxifen , Female , Humans , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Transcriptome , Chemotherapy, Adjuvant/methods , Prognosis , Antineoplastic Agents, Hormonal/therapeutic use
4.
Blood ; 137(6): 751-762, 2021 02 11.
Article in English | MEDLINE | ID: mdl-32929488

ABSTRACT

Approximately 50% of acute myeloid leukemia (AML) patients do not respond to induction therapy (primary induction failure [PIF]) or relapse after <6 months (early relapse [ER]). We have recently shown an association between an immune-infiltrated tumor microenvironment (TME) and resistance to cytarabine-based chemotherapy but responsiveness to flotetuzumab, a bispecific DART antibody-based molecule to CD3ε and CD123. This paper reports the results of a multicenter, open-label, phase 1/2 study of flotetuzumab in 88 adults with relapsed/refractory AML: 42 in a dose-finding segment and 46 at the recommended phase 2 dose (RP2D) of 500 ng/kg per day. The most frequent adverse events were infusion-related reactions (IRRs)/cytokine release syndrome (CRS), largely grade 1-2. Stepwise dosing during week 1, pretreatment dexamethasone, prompt use of tocilizumab, and temporary dose reductions/interruptions successfully prevented severe IRR/CRS. Clinical benefit accrued to PIF/ER patients showing an immune-infiltrated TME. Among 30 PIF/ER patients treated at the RP2D, the complete remission (CR)/CR with partial hematological recovery (CRh) rate was 26.7%, with an overall response rate (CR/CRh/CR with incomplete hematological recovery) of 30.0%. In PIF/ER patients who achieved CR/CRh, median overall survival was 10.2 months (range, 1.87-27.27), with 6- and 12-month survival rates of 75% (95% confidence interval [CI], 0.450-1.05) and 50% (95% CI, 0.154-0.846). Bone marrow transcriptomic analysis showed that a parsimonious 10-gene signature predicted CRs to flotetuzumab (area under the receiver operating characteristic curve = 0.904 vs 0.672 for the European LeukemiaNet classifier). Flotetuzumab represents an innovative experimental approach associated with acceptable safety and encouraging evidence of activity in PIF/ER patients. This trial was registered at www.clinicaltrials.gov as #NCT02152956.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Immunotherapy , Leukemia, Myeloid, Acute/therapy , Salvage Therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cytokine Release Syndrome/chemically induced , Cytokine Release Syndrome/drug therapy , Dose-Response Relationship, Immunologic , Drug Administration Schedule , Drug Resistance, Neoplasm , Female , Follow-Up Studies , Hematopoiesis/drug effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Maximum Tolerated Dose , Middle Aged , Nausea/chemically induced , Protein Interaction Maps , Survival Rate
5.
Breast Cancer Res Treat ; 189(1): 187-202, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173924

ABSTRACT

PURPOSE: Patients with triple-negative breast cancer (TNBC) who do not achieve pathological complete response (pCR) following neoadjuvant chemotherapy have a high risk of recurrence and death. Molecular characterization may identify patients unlikely to achieve pCR. This neoadjuvant trial was conducted to determine the pCR rate with docetaxel and carboplatin and to identify molecular alterations and/or immune gene signatures predicting pCR. EXPERIMENTAL DESIGN: Patients with clinical stages II/III TNBC received 6 cycles of docetaxel and carboplatin. The primary objective was to determine if neoadjuvant docetaxel and carboplatin would increase the pCR rate in TNBC compared to historical expectations. We performed whole-exome sequencing (WES) and immune profiling on pre-treatment tumor samples to identify alterations that may predict pCR. Thirteen matching on-treatment samples were also analyzed to assess changes in molecular profiles. RESULTS: Fifty-eight of 127 (45.7%) patients achieved pCR. There was a non-significant trend toward higher mutation burden for patients with residual cancer burden (RCB) 0/I versus RCB II/III (median 80 versus 68 variants, p 0.88). TP53 was the most frequently mutated gene, observed in 85.7% of tumors. EGFR, RB1, RAD51AP2, SDK2, L1CAM, KPRP, PCDHA1, CACNA1S, CFAP58, COL22A1, and COL4A5 mutations were observed almost exclusively in pre-treatment samples from patients who achieved pCR. Seven mutations in PCDHA1 were observed in pre-treatment samples from patients who did not achieve pCR. Several immune gene signatures including IDO1, PD-L1, interferon gamma signaling, CTLA4, cytotoxicity, tumor inflammation signature, inflammatory chemokines, cytotoxic cells, lymphoid, PD-L2, exhausted CD8, Tregs, and immunoproteasome were upregulated in pre-treatment samples from patients who achieved pCR. CONCLUSION: Neoadjuvant docetaxel and carboplatin resulted in a pCR of 45.7%. WES and immune profiling differentiated patients with and without pCR. TRIAL REGISTRATION: Clinical trial information: NCT02124902, Registered 24 April 2014 & NCT02547987, Registered 10 September 2015.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin/therapeutic use , Docetaxel/therapeutic use , Female , Humans , Neoadjuvant Therapy , Neoplasm Recurrence, Local , Treatment Outcome , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
6.
J Transl Med ; 19(1): 480, 2021 11 27.
Article in English | MEDLINE | ID: mdl-34838031

ABSTRACT

BACKGROUND: The characterization of the immune component of the tumor microenvironment (TME) of human epidermal growth factor receptor 2 positive (HER2+) breast cancer has been limited. Molecular and spatial characterization of HER2+ TME of primary, recurrent, and metastatic breast tumors has the potential to identify immune mediated mechanisms and biomarker targets that could be used to guide selection of therapies. METHODS: We examined 15 specimens from eight patients with HER2+ breast cancer: 10 primary breast tumors (PBT), two soft tissue, one lung, and two brain metastases (BM). Using molecular profiling by bulk gene expression TME signatures, including the Tumor Inflammation Signature (TIS) and PAM50 subtyping, as well as spatial characterization of immune hot, warm, and cold regions in the stroma and tumor epithelium using 64 protein targets on the GeoMx Digital Spatial Profiler. RESULTS: PBT had higher infiltration of immune cells relative to metastatic sites and higher protein and gene expression of immune activation markers when compared to metastatic sites. TIS scores were lower in metastases, particularly in BM. BM also had less immune infiltration overall, but in the stromal compartment with the highest density of immune infiltration had similar levels of T cells that were less activated than PBT stromal regions suggesting immune exclusion in the tumor epithelium. CONCLUSIONS: Our findings show stromal and tumor localized immune cells in the TME are more active in primary versus metastatic disease. This suggests patients with early HER2+ breast cancer could have more benefit from immune-targeting therapies than patients with advanced disease.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Female , Humans , Neoplasm Recurrence, Local , Proteomics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Transcriptome , Tumor Microenvironment
7.
Blood ; 128(26): 3113-3124, 2016 12 29.
Article in English | MEDLINE | ID: mdl-27802968

ABSTRACT

Cancer cell death can be perceived as immunogenic by the host only when malignant cells emit immunostimulatory signals (so-called "damage-associated molecular patterns," DAMPs), as they die in the context of failing adaptive responses to stress. Accumulating preclinical and clinical evidence indicates that the capacity of immunogenic cell death to (re-)activate an anticancer immune response is key to the success of various chemo- and radiotherapeutic regimens. Malignant blasts from patients with acute myeloid leukemia (AML) exposed multiple DAMPs, including calreticulin (CRT), heat-shock protein 70 (HSP70), and HSP90 on their plasma membrane irrespective of treatment. In these patients, high levels of surface-exposed CRT correlated with an increased proportion of natural killer cells and effector memory CD4+ and CD8+ T cells in the periphery. Moreover, CRT exposure on the plasma membrane of malignant blasts positively correlated with the frequency of circulating T cells specific for leukemia-associated antigens, indicating that ecto-CRT favors the initiation of anticancer immunity in patients with AML. Finally, although the levels of ecto-HSP70, ecto-HSP90, and ecto-CRT were all associated with improved relapse-free survival, only CRT exposure significantly correlated with superior overall survival. Thus, CRT exposure represents a novel powerful prognostic biomarker for patients with AML, reflecting the activation of a clinically relevant AML-specific immune response.


Subject(s)
Blast Crisis/immunology , Blast Crisis/pathology , Calreticulin/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Alarmins/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Death , Female , Gene Expression Profiling , Gene Expression Regulation, Leukemic , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Immunity , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Male , Middle Aged , Multivariate Analysis , Phenotype , Proportional Hazards Models , Th1 Cells/immunology , Transcription, Genetic , Treatment Outcome
8.
Adv Exp Med Biol ; 1036: 33-49, 2017.
Article in English | MEDLINE | ID: mdl-29275463

ABSTRACT

The tumor microenvironment consists of a complex milieu of cells and factors that maintain equilibrium between tumor progression and destruction. Characterization of the immune contexture in primary tumors has consistently shown that T lymphocytes are an integral predictor of improved clinical outcome. This is notably true in colorectal carcinoma where high densities of cytotoxic or memory T lymphocytes in the invasive margin and the center of the primary tumor predict better patient survival, a measure termed Immunoscore. Since a high Immunoscore and pre-existing adaptive immune response are significantly correlated with improved clinical outcome, it is essential to understand the mechanisms underlying functional T lymphocyte infiltration into the tumor. The ability of cytolytic and memory T lymphocytes to migrate into tumors is regulated by multiple strategies including T lymphocyte help, homing factors, cytokines, tumor genotype, angiogenesis, lymphangiogenesis, and neurological signals. This chapter will discuss the predominant factors that mediate T-lymphocyte infiltration into tumors and how analysis of these biomarkers determine patients' disease-related survival and predicts response to cancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular , Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Humans , Neoplasms/pathology
9.
Eur J Immunol ; 44(1): 69-79, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24114780

ABSTRACT

Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor-specific CD4(+) T cells enhance CD8(+) T-cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase-related protein 1-specific CD4(+) transgenic T cells-CD4(+) T cells and pmel-CD8(+) T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8(+) T cells with tumor-specific cytokine expression. When combined with CD4(+) T cells, transfer of total (naïve and effector) or effector CD8(+) T cells were highly effective, suggesting CD4(+) T cells can help mediate therapeutic effects by maintaining function of activated CD8(+) T cells. In addition, CD4(+) T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8(+) T cells recovered from mice treated with both CD8(+) and CD4(+) T cells had decreased expression of PD-1 and PD-1-blockade enhanced the therapeutic efficacy of pmel-CD8 alone, suggesting that CD4(+) T cells help reduce CD8(+) T-cell exhaustion. These data support combining immunotherapies that elicit both tumor-specific CD4(+) and CD8(+) T cells for treatment of patients with cancer.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/transplantation , Cancer Vaccines/immunology , Cell Communication , Cellular Microenvironment , Cytotoxicity, Immunologic , Female , Immunologic Memory , Immunotherapy, Adoptive/trends , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Oxidoreductases/genetics , Oxidoreductases/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism
10.
Nat Commun ; 15(1): 2398, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493215

ABSTRACT

The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment.


Subject(s)
Arthritis, Rheumatoid , Receptor Protein-Tyrosine Kinases , Humans , Axl Receptor Tyrosine Kinase , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Synovial Membrane/metabolism
11.
Nat Commun ; 15(1): 4773, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862494

ABSTRACT

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.


Subject(s)
Inflammation , Proto-Oncogene Proteins p21(ras) , Skin , Space Flight , Humans , Skin/immunology , Skin/metabolism , Skin/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Inflammation/immunology , Inflammation/genetics , Inflammation/metabolism , Male , Single-Cell Analysis , Adult , Middle Aged , Female , Metagenomics/methods , Gene Expression Profiling , Multiomics
12.
bioRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034597

ABSTRACT

The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression towards severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.

13.
Nat Med ; 29(4): 888-897, 2023 04.
Article in English | MEDLINE | ID: mdl-37012549

ABSTRACT

B7 homolog 3 (B7-H3; CD276), a tumor-associated antigen and possible immune checkpoint, is highly expressed in prostate cancer (PCa) and is associated with early recurrence and metastasis. Enoblituzumab is a humanized, Fc-engineered, B7-H3-targeting antibody that mediates antibody-dependent cellular cytotoxicity. In this phase 2, biomarker-rich neoadjuvant trial, 32 biological males with operable intermediate to high-risk localized PCa were enrolled to evaluate the safety, anti-tumor activity and immunogenicity of enoblituzumab when given before prostatectomy. The coprimary outcomes were safety and undetectable prostate-specific antigen (PSA) level (PSA0) 1 year postprostatectomy, and the aim was to obtain an estimate of PSA0 with reasonable precision. The primary safety endpoint was met with no notable unexpected surgical or medical complications, or surgical delay. Overall, 12% of patients experienced grade 3 adverse events and no grade 4 events occurred. The coprimary endpoint of the PSA0 rate 1 year postprostatectomy was 66% (95% confidence interval 47-81%). The use of B7-H3-targeted immunotherapy in PCa is feasible and generally safe and preliminary data suggest potential clinical activity. The present study validates B7-H3 as a rational target for therapy development in PCa with larger studies planned. The ClinicalTrials.gov identifier is NCT02923180.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen/therapeutic use , Neoadjuvant Therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , B7 Antigens
14.
iScience ; 26(8): 107374, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520727

ABSTRACT

The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression toward severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.

15.
NPJ Breast Cancer ; 8(1): 61, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534504

ABSTRACT

PAM50 intrinsic subtyping and risk of recurrence (ROR) score are approved for risk profiling in postmenopausal women. We aimed to examine their long-term prognostic value in terms of breast cancer-free interval (BCFi) and overall survival (OS) (n = 437) in premenopausal women randomised to 2 years of tamoxifen versus no systemic treatment irrespective of hormone-receptor status. Intrinsic subtyping added independent prognostic information in patients with oestrogen receptor-positive/human epidermal growth factor 2-negative tumours for BCFi and OS after maximum follow-up (overall P-value 0.02 and 0.006, respectively) and those with high versus low ROR had worse prognosis (maximum follow-up: hazard ratio (HR)BCFi: 1.70, P = 0.04). The prognostic information by ROR was similar regarding OS and in multivariable analysis. These results support that PAM50 subtyping and ROR score provide long-term prognostic information in premenopausal women. Moreover, tamoxifen reduced the incidence of breast cancer events only in patients with Luminal APAM50 tumours (0-10 years: HRBCFi(Luminal A): 0.41, HRBCFi(Luminal B): 1.19, Pinteraction = 0.02).Trial registration: This trial is registered in the ISRCTN database, trial ID: ISRCTN12474687.

16.
Cancers (Basel) ; 14(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010943

ABSTRACT

The main hypothesis of this study is that gene expression profiles (GEPs) integrating both tumor antigenicity and a pre-existing adaptive immune response can be used to generate distinct immune-related signatures of BRAF mutant colorectal cancers (BRAF-CRCs) to identify actionable biomarkers predicting response to immunotherapy. GEPs of 89 immunotherapy-naïve BRAF-CRCs were generated using the Pan-Cancer IO 360 gene expression panel and the NanoString nCounter platform and were correlated with microsatellite instability (MSI) status and with CD8+ tumor-infiltrating lymphocyte (TIL) content. Hot/inflamed profiles were found in 52% of all cases, and high scores of Tumor Inflammation Signature were observed in 42% of the metastatic BRAF-CRCs. A subset of MSI tumors showed a cold profile. Antigen Processing Machinery (APM) signature was not differentially expressed in MSI tumors compared with MSS cases. By contrast, the APM signature was significantly upregulated in CD8+ BRAF-CRCs versus CD8- tumors. Our study demonstrates that a significant fraction of BRAF-CRCs may be a candidate for immunotherapy and that the simultaneous analysis of MSI status and CD8+ TIL content increases accuracy in identifying patients who can potentially benefit from immune checkpoint inhibitors. GEPs may be very useful in expanding the spectrum of patients with BRAF-CRCs who can benefit from immune checkpoint blockade.

17.
Nat Med ; 28(6): 1256-1268, 2022 06.
Article in English | MEDLINE | ID: mdl-35589854

ABSTRACT

Patients with rheumatoid arthritis (RA) receive highly targeted biologic therapies without previous knowledge of target expression levels in the diseased tissue. Approximately 40% of patients do not respond to individual biologic therapies and 5-20% are refractory to all. In a biopsy-based, precision-medicine, randomized clinical trial in RA (R4RA; n = 164), patients with low/absent synovial B cell molecular signature had a lower response to rituximab (anti-CD20 monoclonal antibody) compared with that to tocilizumab (anti-IL6R monoclonal antibody) although the exact mechanisms of response/nonresponse remain to be established. Here, in-depth histological/molecular analyses of R4RA synovial biopsies identify humoral immune response gene signatures associated with response to rituximab and tocilizumab, and a stromal/fibroblast signature in patients refractory to all medications. Post-treatment changes in synovial gene expression and cell infiltration highlighted divergent effects of rituximab and tocilizumab relating to differing response/nonresponse mechanisms. Using ten-by-tenfold nested cross-validation, we developed machine learning algorithms predictive of response to rituximab (area under the curve (AUC) = 0.74), tocilizumab (AUC = 0.68) and, notably, multidrug resistance (AUC = 0.69). This study supports the notion that disease endotypes, driven by diverse molecular pathology pathways in the diseased tissue, determine diverse clinical and treatment-response phenotypes. It also highlights the importance of integration of molecular pathology signatures into clinical algorithms to optimize the future use of existing medications and inform the development of new drugs for refractory patients.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Biomarkers/analysis , Biopsy , Humans , Rituximab/therapeutic use
18.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: mdl-35536669

ABSTRACT

BACKGROUNDCOVID-19 remains a global health emergency with limited treatment options, lagging vaccine rates, and inadequate healthcare resources in the face of an ongoing calamity. The disease is characterized by immune dysregulation and cytokine storm. Cyclosporine A (CSA) is a calcineurin inhibitor that modulates cytokine production and may have direct antiviral properties against coronaviruses.METHODSTo test whether a short course of CSA was safe in patients with COVID-19, we treated 10 hospitalized, oxygen-requiring, noncritically ill patients with CSA (starting at a dose of 9 mg/kg/d). We evaluated patients for clinical response and adverse events, measured serum cytokines and chemokines associated with COVID-19 hyperinflammation, and conducted gene-expression analyses.RESULTSFive participants experienced adverse events, none of which were serious; transaminitis was most common. No participant required intensive care unit-level care, and all patients were discharged alive. CSA treatment was associated with significant reductions in serum cytokines and chemokines important in COVID-19 hyperinflammation, including CXCL10. Following CSA administration, we also observed a significant reduction in type I IFN gene expression signatures and other transcriptional profiles associated with exacerbated hyperinflammation in the peripheral blood cells of these patients.CONCLUSIONShort courses of CSA appear safe and feasible in patients with COVID-19 who require oxygen and may be a useful adjunct in resource-limited health care settings.TRIAL REGISTRATIONThis trial was registered on ClinicalTrials.gov (Investigational New Drug Application no. 149997; ClinicalTrials.gov NCT04412785).FUNDINGThis study was internally funded by the Center for Cellular Immunotherapies.


Subject(s)
COVID-19 Drug Treatment , Cyclosporine/therapeutic use , Cytokines , Humans , Oxygen , SARS-CoV-2
19.
Cancer Discov ; 12(10): 2372-2391, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35904479

ABSTRACT

Chimeric antigen receptor T-cell (CART) immunotherapy led to unprecedented responses in patients with refractory/relapsed B-cell non-Hodgkin lymphoma (NHL); nevertheless, two thirds of patients experience treatment failure. Resistance to apoptosis is a key feature of cancer cells, and it is associated with treatment failure. In 87 patients with NHL treated with anti-CD19 CART, we found that chromosomal alteration of B-cell lymphoma 2 (BCL-2), a critical antiapoptotic regulator, in lymphoma cells was associated with reduced survival. Therefore, we combined CART19 with the FDA-approved BCL-2 inhibitor venetoclax and demonstrated in vivo synergy in venetoclax-sensitive NHL. However, higher venetoclax doses needed for venetoclax-resistant lymphomas resulted in CART toxicity. To overcome this limitation, we developed venetoclax-resistant CART by overexpressing mutated BCL-2(F104L), which is not recognized by venetoclax. Notably, BCL-2(F104L)-CART19 synergized with venetoclax in multiple lymphoma xenograft models. Furthermore, we uncovered that BCL-2 overexpression in T cells intrinsically enhanced CART antitumor activity in preclinical models and in patients by prolonging CART persistence. SIGNIFICANCE: This study highlights the role of BCL-2 in resistance to CART immunotherapy for cancer and introduces a novel concept for combination therapies-the engineering of CART cells to make them resistant to proapoptotic small molecules, thereby enhancing the therapeutic index of these combination therapies. This article is highlighted in the In This Issue feature, p. 2221.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Chimeric Antigen , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Lymphoma/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Receptors, Antigen, T-Cell , Sulfonamides , T-Lymphocytes
20.
Nat Med ; 28(4): 724-734, 2022 04.
Article in English | MEDLINE | ID: mdl-35314843

ABSTRACT

Chimeric antigen receptor (CAR) T cells have demonstrated promising efficacy, particularly in hematologic malignancies. One challenge regarding CAR T cells in solid tumors is the immunosuppressive tumor microenvironment (TME), characterized by high levels of multiple inhibitory factors, including transforming growth factor (TGF)-ß. We report results from an in-human phase 1 trial of castration-resistant, prostate cancer-directed CAR T cells armored with a dominant-negative TGF-ß receptor (NCT03089203). Primary endpoints were safety and feasibility, while secondary objectives included assessment of CAR T cell distribution, bioactivity and disease response. All prespecified endpoints were met. Eighteen patients enrolled, and 13 subjects received therapy across four dose levels. Five of the 13 patients developed grade ≥2 cytokine release syndrome (CRS), including one patient who experienced a marked clonal CAR T cell expansion, >98% reduction in prostate-specific antigen (PSA) and death following grade 4 CRS with concurrent sepsis. Acute increases in inflammatory cytokines correlated with manageable high-grade CRS events. Three additional patients achieved a PSA reduction of ≥30%, with CAR T cell failure accompanied by upregulation of multiple TME-localized inhibitory molecules following adoptive cell transfer. CAR T cell kinetics revealed expansion in blood and tumor trafficking. Thus, clinical application of TGF-ß-resistant CAR T cells is feasible and generally safe. Future studies should use superior multipronged approaches against the TME to improve outcomes.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Male , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , T-Lymphocytes , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL