Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791122

ABSTRACT

High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be calibrated by analyzing DNA methylation standards of known methylation status and mixtures thereof. In general, DNA methylation levels determined by the classical calibration approach, including the whole temperature range in between normalization intervals, are in good agreement with the mean of the DNA methylation status of individual CpGs determined by pyrosequencing (PSQ), the gold standard of targeted DNA methylation analysis. However, the classical calibration approach leads to highly inaccurate results for samples with heterogeneous DNA methylation since they result in more complex melt curves, differing in their shape compared to those of DNA standards and mixtures thereof. Here, we present a novel calibration approach, i.e., temperature-wise calibration. By temperature-wise calibration, methylation profiles over temperature are obtained, which help in finding the optimal calibration range and thus increase the accuracy of HRM data, particularly for heterogeneous DNA methylation. For explaining the principle and demonstrating the potential of the novel calibration approach, we selected the promoter and two enhancers of MGMT, a gene encoding the repair protein MGMT.


Subject(s)
DNA Methylation , Nucleic Acid Denaturation , Calibration , Humans , Promoter Regions, Genetic , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , Temperature , DNA Repair Enzymes/genetics , CpG Islands , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , DNA/genetics
2.
Int J Mol Sci ; 22(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34830407

ABSTRACT

Due to its cost-efficiency, high resolution melting (HRM) analysis plays an important role in genotyping of candidate single nucleotide polymorphisms (SNPs). Studies indicate that HRM analysis is not only suitable for genotyping individual SNPs, but also allows genotyping of multiple SNPs in one and the same amplicon, although with limited discrimination power. By targeting the three C>T SNPs rs527559815, rs547832288, and rs16906252, located in the promoter of the O6-methylguanine-DNA methyltransferase (MGMT) gene within a distance of 45 bp, we investigated whether the discrimination power can be increased by coupling HRM analysis with pyrosequencing (PSQ). After optimizing polymerase chain reaction (PCR) conditions, PCR products subjected to HRM analysis could directly be used for PSQ. By analyzing oligodeoxynucleotide controls, representing the 36 theoretically possible variant combinations for diploid human cells (8 triple-homozygous, 12 double-homozygous, 12 double-heterozygous and 4 triple-heterozygous combinations), 34 out of the 36 variant combinations could be genotyped unambiguously by combined analysis of HRM and PSQ data, compared to 22 variant combinations by HRM analysis and 16 variant combinations by PSQ. Our approach was successfully applied to genotype stable cell lines of different origin, primary human tumor cell lines from glioma patients, and breast tissue samples.


Subject(s)
DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/genetics , High-Throughput Nucleotide Sequencing , Promoter Regions, Genetic/genetics , Tumor Suppressor Proteins/genetics , Breast/metabolism , Breast/pathology , DNA Methylation/genetics , Female , Freezing , Genotype , Glioma/metabolism , Glioma/pathology , Humans , Polymorphism, Single Nucleotide/genetics
3.
Chemistry ; 26(67): 15528-15537, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32902006

ABSTRACT

The organometallic AuI bis-N-heterocyclic carbene complex [Au(9-methylcaffeine-8-ylidene)2 ]+ (AuTMX2 ) was previously shown to selectively and potently stabilise telomeric DNA G-quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry-based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal-based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non-covalent interactions. Global protein expression changes of treated cancer cells revealed a multimodal mode of action of AuTMX2 by alterations in the nucleolus, telomeres, actin stress-fibres and stress-responses, which were further supported by pharmacological assays, fluorescence microscopy and cellular accumulation experiments. Proteomic data are available via ProteomeXchange with identifier PXD020560.


Subject(s)
Antineoplastic Agents , Gold , Organometallic Compounds , Ovarian Neoplasms , Antineoplastic Agents/pharmacology , Caffeine/analogs & derivatives , Caffeine/chemistry , Caffeine/pharmacology , Cell Line, Tumor , Female , Gold/chemistry , Gold/pharmacology , Humans , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Organometallic Compounds/pharmacology , Ovarian Neoplasms/drug therapy , Proteomics
4.
Amino Acids ; 52(4): 543-553, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32236698

ABSTRACT

The aim of the current study was to investigate whether doublecortin (DCX), insulin-like growth factor receptor 1 (IGF-1R) and metabotropic glutamate receptor 5 (mGluR5) levels are indeed modified in the aging rat hippocampal individual subareas (rather than total hippocampal tissue as in previous reports) at the protein and mRNA level and whether the methylation status contributes to these changes. Since the aging population is not homogeneous in terms of spatial memory performance, we examined whether changes in DCX, IGF-1R and mGluR5 are linked to cognitive aging. Aged (22 months) male Sprague Dawley rats were trained in the hole-board, a spatial memory task, and were subdivided according to performance to aged impaired and aged unimpaired groups. Age- and memory performance-dependent changes in mRNA steady-state levels, protein levels and DNA methylation status of DCX, IGF-1R and mGluR5 were evaluated by RT-PCR, immunoblotting and bisulfite pyrosequencing. Extending previous findings, we detected decreased DCX protein and mRNA levels in dentate gyrus (DG) of aged animals. IGF-1 signaling is a key event and herein we show that mRNA levels for IGF-1R were unchanged although reduced at the protein level. This finding may simply reflect that these protein levels are regulated at the level of protein synthesis as well as protein degradation. We provide evidence that promoter methylation is not involved in regulation of mRNA and protein levels of DCX, IGF-1R and mGluR5 during aging. Moreover, there was no significant difference between aged rats with impaired and aged rats with unimpaired memory at the protein and mRNA level. Findings propose that changes in the abovementioned protein levels may not be relevant for performance in the spatial memory task used in aged rats.


Subject(s)
Hippocampus/metabolism , Microtubule-Associated Proteins/deficiency , Neuropeptides/deficiency , Receptor, IGF Type 1/deficiency , Aging/metabolism , Animals , Cognition , DNA Methylation , Doublecortin Domain Proteins , Doublecortin Protein , Male , Microtubule-Associated Proteins/analysis , Microtubule-Associated Proteins/genetics , Neuropeptides/analysis , Neuropeptides/genetics , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/analysis , Receptor, IGF Type 1/genetics , Receptor, Metabotropic Glutamate 5/analysis , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/metabolism , Spatial Memory
5.
BMC Cancer ; 17(1): 260, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28403857

ABSTRACT

BACKGROUND: Breast carcinogenesis is a multistep process involving genetic and epigenetic changes. Tumor tissues are frequently characterized by gene-specific hypermethylation and global DNA hypomethylation. Aberrant DNA methylation levels have, however, not only been found in tumors, but also in tumor-surrounding tissue appearing histologically normal. This phenomenon is called field cancerization. Knowledge of the existence of a cancer field and its spread are of clinical relevance. If the tissue showing pre-neoplastic lesions is not removed by surgery, it may develop into invasive carcinoma. METHODS: We investigated the prevalence of gene-specific and global DNA methylation changes in tumor-adjacent and tumor-distant tissues in comparison to tumor tissues from the same breast cancer patients (n = 18) and normal breast tissues from healthy women (n = 4). Methylation-sensitive high resolution melting (MS-HRM) analysis was applied to determine methylation levels in the promoters of APC, BRCA1, CDKN2A (p16), ESR1, HER2/neu and PTEN, in CDKN2A exon 2 and in LINE-1, as indicator for the global DNA methylation extent. The methylation status of the ESR2 promoter was determined by pyrosequencing. RESULTS: Tumor-adjacent and tumor-distant tissues frequently showed pre-neoplastic gene-specific and global DNA methylation changes. The APC promoter (p = 0.003) and exon 2 of CDKN2A (p < 0.001) were significantly higher methylated in tumors than in normal breast tissues from healthy women. For both regions, significant differences were also found between tumor and tumor-adjacent tissues (p = 0.001 and p < 0.001, respectively) and tumor and tumor-distant tissues (p = 0.001 and p < 0.001, respectively) from breast cancer patients. In addition, tumor-adjacent (p = 0.002) and tumor-distant tissues (p = 0.005) showed significantly higher methylation levels of CDKN2A exon 2 than normal breast tissues serving as control. Significant correlations were found between the proliferative activity and the methylation status of CDKN2A exon 2 in tumor (r = -0.485, p = 0.041) and tumor-distant tissues (r = -0.498, p = 0.036). CONCLUSIONS: From our results we can conclude that methylation changes in CDKN2A exon 2 are associated with breast carcinogenesis. Further investigations are, however, necessary to confirm that hypermethylation of CDKN2A exon 2 is associated with tumor proliferative activity.


Subject(s)
Breast Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p18/genetics , DNA Methylation , Estrogen Receptor beta/genetics , Sequence Analysis, DNA/methods , Adult , Aged , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p16 , Epigenesis, Genetic , Exons , Female , Humans , MCF-7 Cells , Middle Aged , Promoter Regions, Genetic
6.
Amino Acids ; 49(1): 117-127, 2017 01.
Article in English | MEDLINE | ID: mdl-27714514

ABSTRACT

AMPA receptors mediate most fast excitatory synaptic transmission in the brain. Highly dynamic AMPA receptors are subjected to trafficking, recycling, and/or degradation and replacement. Changes in AMPA receptor abundance is an important mechanism involved in learning and memory formation. Results obtained with the Morris water maze (MWM), a paradigm for testing spatial memory in rodent, correlate with hippocampal synaptic plasticity and NMDA function. Different phases of spatial learning like acquisition and retrieval involve AMPA receptors. Long-term memory formation requires dynamic changes in gene transcription and protein synthesis. It is, however, not known so far if epigenetic marks such as DNA methylation and mRNA levels participate in regulation of AMPA receptors in hippocampus during memory retrieval. In the present study, rats were trained or untrained in the MWM. Steady state levels of hippocampal GluA1-4 mRNA were determined by RT-PCR and promoter methylation levels of GluA1-4 by in-house developed bisulfite pyrosequencing methods. GluA1-4 protein levels were determined in parallel in a membrane fraction by SDS-PAGE followed by Western blotting. Our results indicate that changes of hippocampal membrane AMPA receptors were modulated at the protein level, while no changes were observed at the mRNA and at the promoter methylation level of hippocampal GluA1-4. Training in the MWM at retrieval may, therefore, involve GluA2 and GluA4 subunits that may be regulated by protein stability or trafficking as protein determinations were carried out in a hippocampal membrane fraction.


Subject(s)
Epigenesis, Genetic , Hippocampus/metabolism , Maze Learning/physiology , Memory/physiology , Protein Isoforms/genetics , Receptors, AMPA/genetics , Animals , DNA Methylation , Male , Neuronal Plasticity , Promoter Regions, Genetic , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Sequence Analysis, DNA , Synaptic Transmission
7.
Breast Cancer Res ; 17: 125, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26370119

ABSTRACT

INTRODUCTION: It has been shown in some articles that genetic and epigenetic abnormalities cannot only be found in tumor tissues but also in adjacent regions that appear histologically normal. This phenomenon is metaphorically called field cancerization or field defect. Field cancerization is regarded as clinically significant because it is assumed to be an important factor in local recurrence of cancer. As the field showing these molecular abnormalities may not be removed completely by surgery, these changes might lead to neoplasms and subsequent transformation to a tumor. We aimed to investigate the applicability of the methylation status of six tumor suppressor genes as biomarkers for detecting field cancerization in breast cancer. METHODS: The promoter methylation status of CCND2, DAPK1, GSTP1, HIN-1, MGMT and RASSF1A was determined by methylation-sensitive high-resolution melting (MS-HRM) analysis. MS-HRM methods for CCND2, MGMT and RASSF1A were developed in-house, primer sequences for DAPK1, GSTP1 and HIN-1 have already been published. Biopsy samples were taken from tumor, tumor-adjacent and tumor-distant tissue from 17 breast cancer patients. Normal breast tissues of four healthy women served as controls. RESULTS: All MS-HRM methods proved to be very sensitive. LODs were in the range from 0.1 to 1.5 %, LOQs ranged from 0.3 to 5.3 %. A total of 94 %, 82 % and 65 % of the tumors showed methylation of RASSF1A, HIN-1 and MGMT promoters, respectively. The methylation status of these promoters was significantly lower in tumor-distant tissues than in tumor tissues. Tumor-adjacent tissues showed higher methylation status of RASSF1A, HIN-1 and MGMT promoters than tumor-distant tissues, indicating field cancerization. The methylation status of the HIN-1 promoter in tumor-adjacent tissues was found to correlate strongly with that in the corresponding tumors (r = 0.785, p < 0.001), but not with that in the corresponding tumor-distant tissues (r = 0.312, p = 0.239). CONCLUSIONS: Among the gene promoters investigated, the methylation status of the HIN-1 promoter can be considered the best suitable biomarker for detecting field cancerization. Further investigation is needed to test whether it can be used for defining surgical margins in order to prevent future recurrence of breast cancer.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cytokines/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Promoter Regions, Genetic/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Biopsy , Breast Neoplasms/pathology , Cyclin D2/genetics , Death-Associated Protein Kinases/genetics , Epigenesis, Genetic/genetics , Female , Glutathione S-Transferase pi/genetics , Humans , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology
8.
J Agric Food Chem ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941278

ABSTRACT

The prohibition of processed animal proteins (PAPs) has been relaxed gradually since 2007. The official control method for PAPs in feedingstuff, a combination of light microscopy (LM) followed by PCR, is no longer sufficient. Thus, a targeted LC-MS/MS method was developed, which enables a tissue-specific distinction between egg and dairy products, gelatine, and PAPs derived from blood or muscle tissue of the species ruminants, pigs, poultry, and fish. Tissue-specific proteins were analyzed after tryptic digestion to peptides with high-resolution ESI-QTOF-MS. A targeted method was developed based on untargeted proteomics approaches and the selection of specific peptides (45 unique peptides in total). Proficiency testing of blank and spiked samples revealed excellent results for trueness and selectivity. Furthermore, sensitivity was achieved at a level of 0.1% (w/w) for assessed peptides. Summing up, the developed method seems to be suitable for routine analysis after verification by ring trials.

9.
Foods ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38472786

ABSTRACT

Seeds of "sweet lupins" have been playing an increasing role in the food industry. Lupin proteins may be used for producing a variety of foods, including pasta, bread, cookies, dairy products, and coffee substitutes. In a small percentage of the population, lupin consumption may elicit allergic reactions, either due to primary sensitization to lupin or due to cross-allergy with other legumes. Thus, lupin has to be declared on commercial food products according to EU food regulations. In this study, we investigated the influence of roasting seeds of the L. angustifolius cultivar "Boregine" on the detectability of lupin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), ELISAs, LC-MS/MS, and real-time PCR. Seeds were roasted by fluidized bed roasting, and samples were drawn at seed surface temperatures ranging from 98 °C to 242 °C. With increasing roasting temperature, the extractability of proteins and DNA decreased. In addition, roasting resulted in lower detectability of lupin proteins by ELISAs and LC-MS/MS and lower detectability of DNA by real-time PCR. Our results suggest reduced allergenicity of roasted lupin seeds used for the production of "lupin coffee"; however, this has to be confirmed in in vivo studies.

10.
Anal Biochem ; 439(2): 152-60, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23603300

ABSTRACT

The current study compared the applicability of protocols to extract DNA from formalin fixed heart tissues that have been preserved for more than 50 years. Ten methods were tested: a cetyltrimethylammonium bromide (CTAB) standard protocol, seven variants of this standard protocol, and two commercial kits. In the case of younger specimens (fixed in 1951, 1934, or 1914), extracts with DNA concentrations ≥ 10.0 ng/µl were obtained with the standard CTAB protocol, two variants of the standard protocol including prolonged tissue digestion (72 h instead of 1-2h), and a commercial kit particularly recommended for DNA extraction from formalin fixed paraffin embedded tissues (FFPE Kit). With the FFPE Kit, DNA could also be extracted from older tissues (fixed in 1893, 1850/1851, or before 1820). In general, the purity of the DNA extracts, assessed from the ratio of the absorbance at 260 and 280 nm, was not very high. In spite of their rather low purity, the DNA extracts could, however, be used to amplify a 122-bp sequence and, in most cases, also a 171-bp sequence of the gene coding for human albumin by the polymerase chain reaction (PCR).


Subject(s)
Chemical Fractionation/methods , DNA/isolation & purification , Formaldehyde/chemistry , Myocardium/chemistry , Tissue Fixation/methods , Animals , Humans , Swine , Time Factors
11.
Methods ; 56(2): 186-91, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21871961

ABSTRACT

Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) is an industrial chemical mainly used as a monomer in the synthesis of polycarbonates and epoxy resins. BPA has been shown to elicit estrogenic effects via binding to the nuclear estrogen receptors α and ß. Food is considered as the major source of BPA exposure for the general human population. When incorporated into the body, BPA is metabolised in the liver, mainly to BPA glucuronide, and excreted via the urine. The present paper presents analytical methods for the determination of BPA concentrations in foodstuffs and the determination of free and total (free plus conjugated) BPA in urine samples. The paper provides protocols for the preparation and operation of sol-gel immunoaffinity columns and their application to remove interfering matrix compounds and to enrich BPA. In addition, the paper points out major sources of systematic errors in BPA analysis and describes how they can be avoided.


Subject(s)
Chromatography, Affinity/methods , Chromatography, Gel/methods , Food Contamination/analysis , Glucuronides/urine , Phenols/analysis , Phenols/urine , Antibodies/chemistry , Antibody Affinity , Benzhydryl Compounds , Chromatography, Affinity/instrumentation , Chromatography, Gel/instrumentation , Food Analysis/instrumentation , Food Analysis/methods , Food, Preserved/analysis , Glucuronides/analysis , Humans , Peptide Hydrolases/chemistry , Phenols/chemistry
12.
Foods ; 12(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36981061

ABSTRACT

Food producers and retailers are obliged to provide correct food information to consumers; however, despite national and international legislation, food labels frequently contain false or misleading statements regarding food composition, quality, geographic origin, and/or processing [...].

13.
Cells ; 12(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37371109

ABSTRACT

The repair protein O6-methylguanine-DNA methyltransferase (MGMT) is regulated epigenetically, mainly by the methylation of the MGMT promoter. MGMT promoter methylation status has emerged as a prognostic and predictive biomarker for patients with newly diagnosed glioblastoma (GBM). However, a strong negative correlation between MGMT promoter methylation and MGMT protein expression cannot be applied as a rule for all GBM patients. In order to investigate if the DNA methylation status of MGMT enhancers is associated with MGMT promoter methylation, MGMT expression, and the overall survival (OS) of GBM patients, we established assays based on high-resolution melting analysis and pyrosequencing for one intragenic and three intergenic MGMT enhancers. For CpGs in an enhancer located 560 kb upstream of the MGMT promoter, we found a significant negative correlation between the methylation status and MGMT protein levels of GBM samples expressing MGMT. The methylation status of CpGs in the intragenic enhancer (hs696) was strongly negatively correlated with MGMT promoter methylation and was significantly higher in MGMT-expressing GBM samples than in MGMT-non-expressing GBM samples. Moreover, low methylation of CpGs 01-03 and CpGs 09-13 was associated with the longer OS of the GBM patients. Our findings indicate an association between MGMT enhancer methylation and MGMT promoter methylation, MGMT protein expression, and/or OS.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Brain Neoplasms/metabolism , DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Glioblastoma/metabolism , Promoter Regions, Genetic/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
14.
Cancers (Basel) ; 15(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38136323

ABSTRACT

The response of glioblastoma (GBM) patients to the alkylating agent temozolomide (TMZ) vitally depends on the expression level of the repair protein O6-methylguanine-DNA methyltransferase (MGMT). Since MGMT is strongly regulated by promoter methylation, the methylation status of the MGMT promoter has emerged as a prognostic and predictive biomarker for GBM patients. By determining the methylation levels of the four enhancers located within or close to the MGMT gene, we recently found that enhancer methylation contributes to MGMT regulation. In this study, we investigated if methylation of the four enhancers is associated with SNP rs16906252, TERT promoter mutations C228T and C250T, TERT SNP rs2853669, proliferation index Ki-67, overall survival (OS), age, and sex of the patients. In general, associations with genetic variants, clinical parameters, and demographic characteristics were caused by a complex interplay of multiple CpGs in the MGMT promoter and of multiple CpGs in enhancer regions. The observed associations for intragenic enhancer 4, located in intron 2 of MGMT, differed from associations observed for the three intergenic enhancers. Some findings were restricted to subgroups of samples with either methylated or unmethylated MGMT promoters, underpinning the relevance of the MGMT promoter status in GBMs.

15.
Cells ; 12(11)2023 05 24.
Article in English | MEDLINE | ID: mdl-37296582

ABSTRACT

The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , DNA Methylation/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Alternative Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Methods Mol Biol ; 2392: 65-82, 2022.
Article in English | MEDLINE | ID: mdl-34773615

ABSTRACT

Single-nucleotide polymorphisms (SNPs) are powerful molecular markers for the identification and differentiation of closely related organisms. A variety of methods can be used to determine the allele that is present at a specific locus in the genome, including real-time PCR by using an allele-specific primer. In order to increase the selectivity for the target allele, deliberate mismatch bases at the 3' end of the allele-specific primer may be introduced. This strategy has already been used for the identification and differentiation of microorganisms and plants. We have recently developed real-time PCR assays involving mismatch primers for the identification and differentiation of closely related deer species (red deer, fallow deer, sika deer) or the discrimination of wild boar and domestic pig in game meat products. These methods are applicable to detect meat species adulteration in food products.In this chapter, we offer a protocol for the design of PCR primer/probe systems suitable for meat species authentication in food. We address the retrieval and alignment of sequences, primer design by using a commercial software and the introduction of deliberate mismatch bases. In addition, we describe how the suitability of primer/probe systems can be tested in silico and in practice. We use the design of PCR primer/probe systems for wild boar and domestic pig as example.


Subject(s)
Meat Products , Animals , Deer/genetics , Food Contamination/analysis , Meat/analysis , Real-Time Polymerase Chain Reaction , Sus scrofa/genetics , Swine
17.
Foods ; 11(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35454695

ABSTRACT

Meat species authentication in food is most commonly based on the detection of genetic variations. Official food control laboratories frequently apply single and multiplex real-time polymerase chain reaction (PCR) assays and/or DNA arrays. However, in the near future, DNA metabarcoding, the generation of PCR products for DNA barcodes, followed by massively parallel sequencing by next generation sequencing (NGS) technologies, could be an attractive alternative. DNA metabarcoding is superior to well-established methodologies since it allows simultaneous identification of a wide variety of species not only in individual foodstuffs but even in complex mixtures. We have recently published a DNA metabarcoding assay for the identification and differentiation of 15 mammalian species and six poultry species. With the aim to harmonize analytical methods for food authentication across EU Member States, the DNA metabarcoding assay has been tested in an interlaboratory ring trial including 15 laboratories. Each laboratory analyzed 16 anonymously labelled samples (eight samples, two subsamples each), comprising six DNA extract mixtures, one DNA extract from a model sausage, and one DNA extract from maize (negative control). Evaluation of data on repeatability, reproducibility, robustness, and measurement uncertainty indicated that the DNA metabarcoding method is applicable for meat species authentication in routine analysis.

18.
Anal Bioanal Chem ; 400(8): 2615-22, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21461614

ABSTRACT

The paper presents a new sample clean-up method based on immuno-ultrafiltration for the analysis of ochratoxin A in cereals. In contrast to immunoaffinity chromatography, in immuno-ultrafiltration, the antibodies are used in non-immobilised form. Ochratoxin A was extracted with ACN/water (60/40, v/v), and the extract was loaded onto the ultrafiltration device. After a washing step with phosphate-buffered saline, containing 0.05% Tween 20, ochratoxin A was eluted with MeOH/acetic acid (99/1, v/v). The detection of ochratoxin A was carried out with high-performance liquid chromatography and a fluorescence detector coupled to an electrochemical cell (Coring cell). The electrochemical cell was used to eliminate matrix interferences by oxidising matrix compounds. The method was validated by repeatedly analysing spiked barley and rye samples as well as a certified wheat reference material. Recoveries and standard deviations (1 SD) were found to be 71 ± 9%, 77 ± 12% and 77 ± 8% in wheat, barley and rye, respectively. The limit of detection (S/N = 3) and limit of quantitation (S/N = 10) were determined to be 0.4 µg kg(-1) and 1 µg kg(-1). The analysis of the certified reference material resulted in ochratoxin A concentrations which were in the range assigned by the producer. Additionally, the effect of the electrochemical cell on other widely used clean-up techniques, namely the immunoaffinity clean-up and multifunctional columns (Mycosep #229), was evaluated. In all clean-up methods, an improvement of the chromatogram quality was registered.


Subject(s)
Edible Grain/chemistry , Ochratoxins/analysis , Chromatography, High Pressure Liquid , Electrochemistry , Fluorescence , Ultrafiltration
19.
Foods ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34828894

ABSTRACT

The production of bivalve species has been increasing in the last decades. In spite of strict requirements for species declaration, incorrect labelling of bivalve products has repeatedly been detected. We present a DNA metabarcoding method allowing the identification of bivalve species belonging to the bivalve families Mytilidae (mussels), Pectinidae (scallops), and Ostreidae (oysters) in foodstuffs. The method, developed on Illumina instruments, targets a 150 bp fragment of mitochondrial 16S rDNA. We designed seven primers (three primers for mussel species, two primers for scallop species and a primer pair for oyster species) and combined them in a triplex PCR assay. In each of eleven reference samples, the bivalve species was identified correctly. In ten DNA extract mixtures, not only the main component (97.0-98.0%) but also the minor components (0.5-1.5%) were detected correctly, with only a few exceptions. The DNA metabarcoding method was found to be applicable to complex and processed foodstuffs, allowing the identification of bivalves in, e.g., marinated form, in sauces, in seafood mixes and even in instant noodle seafood. The method is highly suitable for food authentication in routine analysis, in particular in combination with a DNA metabarcoding method for mammalian and poultry species published recently.

20.
Foods ; 10(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34828926

ABSTRACT

Game meat products are particularly prone to be adulterated by replacing game meat with cheaper meat species. Recently, we have presented a real-time polymerase chain reaction (PCR) assay for the identification and quantification of roe deer in food. Quantification of the roe deer content in % (w/w) was achieved relatively by subjecting the DNA isolates to a reference real-time PCR assay in addition to the real-time PCR assay for roe deer. Aiming at harmonizing analytical methods for food authentication across EU Member States, the real-time PCR assay for roe deer has been tested in an interlaboratory ring trial including 14 laboratories from Austria, Germany, and Switzerland. Participating laboratories obtained aliquots of DNA isolates from a meat mixture containing 24.8% (w/w) roe deer in pork, roe deer meat, and 12 meat samples whose roe deer content was not disclosed. Performance characteristics included amplification efficiency, level of detection (LOD95%), repeatability, reproducibility, and accuracy of quantitative results. With a relative reproducibility standard deviation ranging from 13.35 to 25.08% (after outlier removal) and recoveries ranging from 84.4 to 114.3%, the real-time PCR assay was found to be applicable for the detection and quantification of roe deer in raw meat samples to detect food adulteration.

SELECTION OF CITATIONS
SEARCH DETAIL