Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38475147

ABSTRACT

The safeguarding of plant health is vital for optimizing crop growth practices, especially in the face of the biggest challenges of our generation, namely the environmental crisis and the dramatic changes in the climate. Among the many innovative tools developed to address these issues, wearable sensors have recently been proposed for monitoring plant growth and microclimates in a sustainable manner. These systems are composed of flexible matrices with embedded sensing elements, showing promise in revolutionizing plant monitoring without being intrusive. Despite their potential benefits, concerns arise regarding the effects of the long-term coexistence of these devices with the plant surface. Surprisingly, a systematic analysis of their influence on plant physiology is lacking. This study aims to investigate the effect of the color and geometric features of flexible matrices on two key plant physiological functions: photosynthesis and transpiration. Our findings indicate that the negative effects associated with colored substrates, as identified in recent research, can be minimized by holing the matrix surface with a percentage of voids of 15.7%. This approach mitigates interference with light absorption and reduces water loss to a negligible extent, making our work one of the first pioneering efforts in understanding the intricate relationship between plant wearables' features and plant health.


Subject(s)
Plant Transpiration , Wearable Electronic Devices , Plant Transpiration/physiology , Photosynthesis/physiology , Plant Physiological Phenomena , Biological Transport , Water , Plant Leaves/physiology
2.
Plants (Basel) ; 13(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674478

ABSTRACT

The increase in soil salinization represents a current challenge for plant productivity, as most plants, including crops, are mainly salt-sensitive species. The identification of molecular traits underpinning salt tolerance represents a primary goal for breeding programs. In this scenario, the study of intraspecific variability represents a valid tool for investigating natural genetic resources evolved by plants in different environmental conditions. As a model system, Arabidopsis thaliana, including over 750 natural accessions, represents a species extensively studied at phenotypic, metabolic, and genomic levels under different environmental conditions. Two haplogroups showing opposite root architecture (shallow or deep roots) in response to auxin flux perturbation were identified and associated with EXO70A3 locus variations. Here, we studied the influence of these genetic backgrounds on plant salt tolerance. Eight accessions belonging to the two haplogroups were tested for salt sensitivity by exposing them to moderate (75 mM NaCl) or severe (150 mM NaCl) salt stress. Salt-tolerant accessions were found in both haplogroups, and all of them showed efficient ROS-scavenging ability. Even if an exclusive relation between salt tolerance and haplogroup membership was not observed, the modulation of root system architecture might also contribute to salt tolerance.

3.
Plants (Basel) ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999633

ABSTRACT

The seed habit is the most complex and successful method of sexual reproduction in vascular plants. It represents a remarkable moment in the evolution of plants that afterward spread on land. In particular, seed size had a pivotal role in evolutionary success and agronomic traits, especially in the field of crop domestication. Given that crop seeds constitute one of the primary products for consumption, it follows that seed size represents a fundamental determinant of crop yield. This adaptative feature is strictly controlled by genetic traits from both maternal and zygotic tissues, although seed development and growth are also affected by environmental cues. Despite being a highly exploited topic for both basic and applied research, there are still many issues to be elucidated for developmental biology as well as for agronomic science. This review addresses a number of open questions related to cues that influence seed growth and size and how they influence seed germination. Moreover, new insights on the genetic-molecular control of this adaptive trait are presented.

4.
Nat Prod Res ; : 1-10, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001697

ABSTRACT

Matcha tea is obtained from Camellia sinensis plants grown in the shade and is consumed as a whole powder of the leaves. Matcha is reported to have a high content of bioactive components, such as catechins and quercetin, which underlie some of its biological properties. The study consists of the evaluation of the antiglycative effects and antioxidant potential of extracts derived from Grade 1 and Grade 4 matcha tea supported by the phytochemical analysis of the contained relevant antioxidant compounds. The aqueous extracts from matcha powders were prepared in an ultrasonic bath at 60 and 80 °C. All the extracts showed a significant antiglycative activity. For all the extracts levels of antioxidant compounds as well as antioxidant potential were significantly high. Results obtained suggest the potential of matcha tea as an ingredient for nutraceutical and pharmaceutical applications.

SELECTION OF CITATIONS
SEARCH DETAIL