Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Neurol ; 23(1): 414, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990160

ABSTRACT

BACKGROUND: Traumatic cervical spinal cord injury (SCI) results in reduced sensorimotor abilities that strongly impact on the achievement of daily living activities involving hand/arm function. Among several technology-based rehabilitative approaches, Brain-Computer Interfaces (BCIs) which enable the modulation of electroencephalographic sensorimotor rhythms, are promising tools to promote the recovery of hand function after SCI. The "DiSCIoser" study proposes a BCI-supported motor imagery (MI) training to engage the sensorimotor system and thus facilitate the neuroplasticity to eventually optimize upper limb sensorimotor functional recovery in patients with SCI during the subacute phase, at the peak of brain and spinal plasticity. To this purpose, we have designed a BCI system fully compatible with a clinical setting whose efficacy in improving hand sensorimotor function outcomes in patients with traumatic cervical SCI will be assessed and compared to the hand MI training not supported by BCI. METHODS: This randomized controlled trial will include 30 participants with traumatic cervical SCI in the subacute phase randomly assigned to 2 intervention groups: the BCI-assisted hand MI training and the hand MI training not supported by BCI. Both interventions are delivered (3 weekly sessions; 12 weeks) as add-on to standard rehabilitation care. A multidimensional assessment will be performed at: randomization/pre-intervention and post-intervention. Primary outcome measure is the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) somatosensory sub-score. Secondary outcome measures include the motor and functional scores of the GRASSP and other clinical, neuropsychological, neurophysiological and neuroimaging measures. DISCUSSION: We expect the BCI-based intervention to promote meaningful cortical sensorimotor plasticity and eventually maximize recovery of arm functions in traumatic cervical subacute SCI. This study will generate a body of knowledge that is fundamental to drive optimization of BCI application in SCI as a top-down therapeutic intervention, thus beyond the canonical use of BCI as assistive tool. TRIAL REGISTRATION: Name of registry: DiSCIoser: improving arm sensorimotor functions after spinal cord injury via brain-computer interface training (DiSCIoser). TRIAL REGISTRATION NUMBER: NCT05637775; registration date on the ClinicalTrial.gov platform: 05-12-2022.


Subject(s)
Brain-Computer Interfaces , Spinal Cord Injuries , Humans , Arm , Upper Extremity , Spinal Cord Injuries/rehabilitation , Neuronal Plasticity , Recovery of Function/physiology
2.
J Neuroeng Rehabil ; 20(1): 5, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36639665

ABSTRACT

BACKGROUND: Brain-Computer Interfaces (BCI) promote upper limb recovery in stroke patients reinforcing motor related brain activity (from electroencephalogaphy, EEG). Hybrid BCIs which include peripheral signals (electromyography, EMG) as control features could be employed to monitor post-stroke motor abnormalities. To ground the use of corticomuscular coherence (CMC) as a hybrid feature for a rehabilitative BCI, we analyzed high-density CMC networks (derived from multiple EEG and EMG channels) and their relation with upper limb motor deficit by comparing data from stroke patients with healthy participants during simple hand tasks. METHODS: EEG (61 sensors) and EMG (8 muscles per arm) were simultaneously recorded from 12 stroke (EXP) and 12 healthy participants (CTRL) during simple hand movements performed with right/left (CTRL) and unaffected/affected hand (EXP, UH/AH). CMC networks were estimated for each movement and their properties were analyzed by means of indices derived ad-hoc from graph theory and compared among groups. RESULTS: Between-group analysis showed that CMC weight of the whole brain network was significantly reduced in patients during AH movements. The network density was increased especially for those connections entailing bilateral non-target muscles. Such reduced muscle-specificity observed in patients was confirmed by muscle degree index (connections per muscle) which indicated a connections' distribution among non-target and contralateral muscles and revealed a higher involvement of proximal muscles in patients. CMC network properties correlated with upper-limb motor impairment as assessed by Fugl-Meyer Assessment and Manual Muscle Test in patients. CONCLUSIONS: High-density CMC networks can capture motor abnormalities in stroke patients during simple hand movements. Correlations with upper limb motor impairment support their use in a BCI-based rehabilitative approach.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Humans , Electroencephalography , Upper Extremity , Electromyography
3.
Brain Topogr ; 35(2): 182-190, 2022 03.
Article in English | MEDLINE | ID: mdl-35043274

ABSTRACT

Sensorimotor rhythms-based Brain-Computer Interfaces (BCIs) have successfully been employed to address upper limb motor rehabilitation after stroke. In this context, becomes crucial the choice of features that would enable an appropriate electroencephalographic (EEG) sensorimotor activation/engagement underlying the favourable motor recovery. Here, we present a novel feature selection algorithm (GUIDER) designed and implemented to integrate specific requirements related to neurophysiological knowledge and rehabilitative principles. The GUIDER algorithm was tested on an EEG dataset collected from 13 subacute stroke participants. The comparison between the automatic feature selection procedure by means of GUIDER algorithm and the manual feature selection executed by an expert neurophysiologist returned similar performance in terms of both feature selection and classification. Our preliminary findings suggest that the choices of experienced neurophysiologists could be reproducible by an automatic approach. The proposed automatic algorithm could be apt to support the professional end-users not expert in BCI such as therapist/clinicians and, to ultimately foster a wider employment of the BCI-based rehabilitation after stroke.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Algorithms , Electroencephalography/methods , Humans , Imagination/physiology , Stroke Rehabilitation/methods
4.
Sensors (Basel) ; 21(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071124

ABSTRACT

EEG signals are widely used to estimate brain circuits associated with specific tasks and cognitive processes. The testing of connectivity estimators is still an open issue because of the lack of a ground-truth in real data. Existing solutions such as the generation of simulated data based on a manually imposed connectivity pattern or mass oscillators can model only a few real cases with limited number of signals and spectral properties that do not reflect those of real brain activity. Furthermore, the generation of time series reproducing non-ideal and non-stationary ground-truth models is still missing. In this work, we present the SEED-G toolbox for the generation of pseudo-EEG data with imposed connectivity patterns, overcoming the existing limitations and enabling control of several parameters for data simulation according to the user's needs. We first described the toolbox including guidelines for its correct use and then we tested its performances showing how, in a wide range of conditions, datasets composed by up to 60 time series were successfully generated in less than 5 s and with spectral features similar to real data. Then, SEED-G is employed for studying the effect of inter-trial variability Partial Directed Coherence (PDC) estimates, confirming its robustness.


Subject(s)
Brain Mapping , Electroencephalography , Algorithms , Brain , Computer Simulation
5.
BMC Neurol ; 20(1): 254, 2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32593293

ABSTRACT

BACKGROUND: Stroke is a leading cause of long-term disability. Cost-effective post-stroke rehabilitation programs for upper limb are critically needed. Brain-Computer Interfaces (BCIs) which enable the modulation of Electroencephalography (EEG) sensorimotor rhythms are promising tools to promote post-stroke recovery of upper limb motor function. The "Promotoer" study intends to boost the application of the EEG-based BCIs in clinical practice providing evidence for a short/long-term efficacy in enhancing post-stroke hand functional motor recovery and quantifiable indices of the participants response to a BCI-based intervention. To these aims, a longitudinal study will be performed in which subacute stroke participants will undergo a hand motor imagery (MI) training assisted by the Promotoer system, an EEG-based BCI system fully compliant with rehabilitation requirements. METHODS: This longitudinal 2-arm randomized controlled superiority trial will include 48 first ever, unilateral, subacute stroke participants, randomly assigned to 2 intervention groups: the BCI-assisted hand MI training and a hand MI training not supported by BCI. Both interventions are delivered (3 weekly session; 6 weeks) as add-on regimen to standard intensive rehabilitation. A multidimensional assessment will be performed at: randomization/pre-intervention, 48 h post-intervention, and at 1, 3 and 6 month/s after end of intervention. Primary outcome measure is the Fugl-Meyer Assessment (FMA, upper extremity) at 48 h post-intervention. Secondary outcome measures include: the upper extremity FMA at follow-up, the Modified Ashworth Scale, the Numeric Rating Scale for pain, the Action Research Arm Test, the National Institute of Health Stroke Scale, the Manual Muscle Test, all collected at the different timepoints as well as neurophysiological and neuroimaging measures. DISCUSSION: We expect the BCI-based rewarding of hand MI practice to promote long-lasting retention of the early induced improvement in hand motor outcome and also, this clinical improvement to be sustained by a long-lasting neuroplasticity changes harnessed by the BCI-based intervention. Furthermore, the longitudinal multidimensional assessment will address the selection of those stroke participants who best benefit of a BCI-assisted therapy, consistently advancing the transfer of BCIs to a best clinical practice. TRIAL REGISTRATION: Name of registry: BCI-assisted MI Intervention in Subacute Stroke (Promotoer). TRIAL REGISTRATION NUMBER: NCT04353297 ; registration date on the ClinicalTrial.gov platform: April, 15/2020.


Subject(s)
Brain-Computer Interfaces , Randomized Controlled Trials as Topic , Stroke Rehabilitation/methods , Adult , Electroencephalography/methods , Female , Humans , Imagination/physiology , Longitudinal Studies , Male , Middle Aged , Motor Activity/physiology , Recovery of Function/physiology , Stroke Rehabilitation/instrumentation , Upper Extremity/physiopathology
6.
J Neuroeng Rehabil ; 16(1): 95, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337400

ABSTRACT

BACKGROUND: Add-on robot-mediated therapy has proven to be more effective than conventional therapy alone in post-stroke gait rehabilitation. Such robot-mediated interventions routinely use also visual biofeedback tools. A better understanding of biofeedback content effects when used for robotic locomotor training may improve the rehabilitation process and outcomes. METHODS: This randomized cross-over pilot trial aimed to address the possible impact of different biofeedback contents on patients' performance and experience during Lokomat training, by comparing a novel biofeedback based on online biological electromyographic information (EMGb) versus the commercial joint torque biofeedback (Rb) in sub-acute non ambulatory patients. 12 patients were randomized into two treatment groups, A and B, based on two different biofeedback training. For both groups, study protocol consisted of 12 Lokomat sessions, 6 for each biofeedback condition, 40 min each, 3 sessions per week of frequency. All patients performed Lokomat trainings as an add-on therapy to the conventional one that was the same for both groups and consisted of 40 min per day, 5 days per week. The primary outcome was the Modified Ashworth Spasticity Scale, and secondary outcomes included clinical, neurological, mechanical, and personal experience variables collected before and after each biofeedback training. RESULTS: Lokomat training significantly improved gait/daily living activity independence and trunk control, nevertheless, different effects due to biofeedback content were remarked. EMGb was more effective to reduce spasticity and improve muscle force at the ankle, knee and hip joints. Robot data suggest that Rb induces more adaptation to robotic movements than EMGb. Furthermore, Rb was perceived less demanding than EMGb, even though patient motivation was higher for EMGb. Robot was perceived to be effective, easy to use, reliable and safe: acceptability was rated as very high by all patients. CONCLUSIONS: Specific effects can be related to biofeedback content: when muscular-based information is used, a more direct effect on lower limb spasticity and muscle activity is evidenced. In a similar manner, when biofeedback treatment is based on joint torque data, a higher patient compliance effect in terms of force exerted is achieved. Subjects who underwent EMGb seemed to be more motivated than those treated with Rb.


Subject(s)
Biofeedback, Psychology/instrumentation , Gait Disorders, Neurologic/rehabilitation , Robotics/instrumentation , Robotics/methods , Stroke Rehabilitation/instrumentation , Aged , Biomechanical Phenomena , Cross-Over Studies , Electromyography/instrumentation , Female , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Self-Help Devices , Stroke/complications , Stroke Rehabilitation/methods , Torque
7.
Eur J Neurosci ; 47(2): 158-163, 2018 01.
Article in English | MEDLINE | ID: mdl-29247485

ABSTRACT

Brain connectivity has been employed to investigate on post-stroke recovery mechanisms and assess the effect of specific rehabilitation interventions. Changes in interhemispheric coupling after stroke have been related to the extent of damage in the corticospinal tract (CST) and thus, to motor impairment. In this study, we aimed at defining an index of interhemispheric connectivity derived from electroencephalography (EEG), correlated with CST integrity and clinical impairment. Thirty sub-acute stroke patients underwent clinical and neurophysiological evaluation: CST integrity was assessed by Transcranial Magnetic Stimulation and high-density EEG was recorded at rest. Connectivity was assessed by means of Partial Directed Coherence and the normalized Inter-Hemispheric Strength (nIHS) was calculated for each patient and frequency band on the whole network and in three sub-networks relative to the frontal, central (sensorimotor) and occipital areas. Interhemipheric coupling as expressed by nIHS on the whole network was significantly higher in patients with preserved CST integrity in beta and gamma bands. The same index estimated for the three sub-networks showed significant differences only in the sensorimotor area in lower beta, with higher values in patients with preserved CST integrity. The sensorimotor lower beta nIHS showed a significant positive correlation with clinical impairment. We propose an EEG-based connectivity index which is a measure of the interhemispheric cross-talking and correlates with functional motor impairment in subacute stroke patients. Such index could be employed to evaluate the effects of training aimed at re-establishing interhemispheric balance and eventually drive the design of future connectivity-driven rehabilitation interventions.


Subject(s)
Brain Waves , Functional Laterality , Pyramidal Tracts/physiopathology , Sensorimotor Cortex/physiopathology , Stroke/physiopathology , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
8.
Cerebellum ; 16(2): 358-375, 2017 04.
Article in English | MEDLINE | ID: mdl-27372098

ABSTRACT

Although cerebellar-cortical interactions have been studied extensively in animal models and humans using modern neuroimaging techniques, the effects of cerebellar stroke and focal lesions on cerebral cortical processing remain unknown. In the present study, we analyzed the large-scale functional connectivity at the cortical level by combining high-density electroencephalography (EEG) and source imaging techniques to evaluate and quantify the compensatory reorganization of brain networks after cerebellar damage. The experimental protocol comprised a repetitive finger extension task by 10 patients with unilateral focal cerebellar lesions and 10 matched healthy controls. A graph theoretical approach was used to investigate the functional reorganization of cortical networks. Our patients, compared with controls, exhibited significant differences at global and local topological level of their brain networks. An abnormal rise in small-world network efficiency was observed in the gamma band (30-40 Hz) during execution of the task, paralleled by increased long-range connectivity between cortical hemispheres. Our findings show that a pervasive reorganization of the brain network is associated with cerebellar focal damage and support the idea that the cerebellum boosts or refines cortical functions. Clinically, these results suggest that cortical changes after cerebellar damage are achieved through an increase in the interactions between remote cortical areas and that rehabilitation should aim to reshape functional activation patterns. Future studies should determine whether these hypotheses are limited to motor tasks or if they also apply to cerebro-cerebellar dysfunction in general.


Subject(s)
Cerebellum/physiopathology , Functional Laterality/physiology , Motor Activity/physiology , Neuronal Plasticity/physiology , Adolescent , Adult , Aged , Cerebellum/surgery , Electroencephalography , Electromyography , Female , Fingers/physiopathology , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Neural Pathways/physiopathology , Neural Pathways/surgery , Neurosurgical Procedures/adverse effects , Signal Processing, Computer-Assisted , Stroke/physiopathology
9.
Biomed Eng Online ; 16(Suppl 1): 74, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28830552

ABSTRACT

BACKGROUND: This paper presents the preliminary results of a novel rehabilitation therapy for cervical and trunk control of children with cerebral palsy (CP) based on serious videogames and physical exercise. MATERIALS: The therapy is based on the use of the ENLAZA Interface, a head mouse based on inertial technology that will be used to control a set of serious videogames with movements of the head. METHODS: Ten users with CP participated in the study. Whereas the control group (n = 5) followed traditional therapies, the experimental group (n = 5) complemented these therapies with a series of ten sessions of gaming with ENLAZA to exercise cervical flexion-extensions, rotations and inclinations in a controlled, engaging environment. RESULTS: The ten work sessions yielded improvements in head and trunk control that were higher in the experimental group for Visual Analogue Scale, Goal Attainment Scaling and Trunk Control Measurement Scale (TCMS). Significant differences (27% vs. 2% of percentage improvement) were found between the experimental and control groups for TCMS (p < 0.05). The kinematic assessment shows that there were some improvements in the active and the passive range of motion. However, no significant differences were found pre- and post-intervention. CONCLUSIONS: Physical therapy that combines serious games with traditional rehabilitation could allow children with CP to achieve larger function improvements in the trunk and cervical regions. However, given the limited scope of this trial (n = 10) additional studies are needed to corroborate this hypothesis.


Subject(s)
Cerebral Palsy/physiopathology , Cerebral Palsy/therapy , Cervical Cord/physiopathology , Head Movements , Physical Therapy Modalities , Posture , Video Games , Biomechanical Phenomena , Child , Child, Preschool , Female , Humans , Male , Recovery of Function
10.
Ann Neurol ; 77(5): 851-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25712802

ABSTRACT

OBJECTIVE: Motor imagery (MI) is assumed to enhance poststroke motor recovery, yet its benefits are debatable. Brain-computer interfaces (BCIs) can provide instantaneous and quantitative measure of cerebral functions modulated by MI. The efficacy of BCI-monitored MI practice as add-on intervention to usual rehabilitation care was evaluated in a randomized controlled pilot study in subacute stroke patients. METHODS: Twenty-eight hospitalized subacute stroke patients with severe motor deficits were randomized into 2 intervention groups: 1-month BCI-supported MI training (BCI group, n = 14) and 1-month MI training without BCI support (control group; n = 14). Functional and neurophysiological assessments were performed before and after the interventions, including evaluation of the upper limbs by Fugl-Meyer Assessment (FMA; primary outcome measure) and analysis of oscillatory activity and connectivity at rest, based on high-density electroencephalographic (EEG) recordings. RESULTS: Better functional outcome was observed in the BCI group, including a significantly higher probability of achieving a clinically relevant increase in the FMA score (p < 0.03). Post-BCI training changes in EEG sensorimotor power spectra (ie, stronger desynchronization in the alpha and beta bands) occurred with greater involvement of the ipsilesional hemisphere in response to MI of the paralyzed trained hand. Also, FMA improvements (effectiveness of FMA) correlated with the changes (ie, post-training increase) at rest in ipsilesional intrahemispheric connectivity in the same bands (p < 0.05). INTERPRETATION: The introduction of BCI technology in assisting MI practice demonstrates the rehabilitative potential of MI, contributing to significantly better motor functional outcomes in subacute stroke patients with severe motor impairments.


Subject(s)
Brain-Computer Interfaces/psychology , Evoked Potentials, Motor , Imagery, Psychotherapy/methods , Recovery of Function , Stroke/psychology , Stroke/therapy , Aged , Female , Humans , Male , Middle Aged , Pilot Projects , Stroke/physiopathology
11.
Arch Phys Med Rehabil ; 96(3 Suppl): S71-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25721550

ABSTRACT

OBJECTIVE: To evaluate the feasibility of brain-computer interface (BCI)-assisted motor imagery training to support hand/arm motor rehabilitation after stroke during hospitalization. DESIGN: Proof-of-principle study. SETTING: Neurorehabilitation hospital. PARTICIPANTS: Convenience sample of patients (N=8) with new-onset arm plegia or paresis caused by unilateral stroke. INTERVENTIONS: The BCI-based intervention was administered as an "add-on" to usual care and lasted 4 weeks. Under the supervision of a therapist, patients were asked to practice motor imagery of their affected hand and received as a discrete feedback the movements of a "virtual" hand superimposed on their own. Such a BCI-based device was installed in a rehabilitation hospital ward. MAIN OUTCOME MEASURES: Following a user-centered design, we assessed system usability in terms of motivation, satisfaction (by means of visual analog scales), and workload (National Aeronautics and Space Administration-Task Load Index). The usability of the BCI-based system was also evaluated by 15 therapists who participated in a focus group. RESULTS: All patients successfully accomplished the BCI training. Significant positive correlations were found between satisfaction and motivation (P=.001, r=.393). BCI performance correlated with interest (P=.027, r=.257) and motivation (P=.012, r=.289). During the focus group, professionals positively acknowledged the opportunity offered by BCI-assisted training to measure patients' adherence to rehabilitation. CONCLUSIONS: An ecological BCI-based device to assist motor imagery practice was found to be feasible as an add-on intervention and tolerable by patients who were exposed to the system in the rehabilitation environment.


Subject(s)
Brain-Computer Interfaces , Inpatients , Paresis/rehabilitation , Stroke Rehabilitation , Upper Extremity , Humans , Paresis/etiology , Stroke/complications
12.
Arch Phys Med Rehabil ; 96(3 Suppl): S54-61, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25721548

ABSTRACT

OBJECTIVE: To evaluate the impact of a hybrid control on usability of a P300-based brain-computer interface (BCI) system that was designed to control an assistive technology software and was integrated with an electromyographic channel for error correction. DESIGN: Proof-of-principle study with a convenience sample. SETTING: Neurologic rehabilitation hospital. PARTICIPANTS: Participants (N=11) in this pilot study included healthy (n=8) and severely motor impaired (n=3) persons. The 3 people with severe motor disability were identified as potential candidates to benefit from the proposed hybrid BCI system for communication and environmental interaction. INTERVENTIONS: To eventually investigate the improvement in usability, we compared 2 modalities of BCI system control: a P300-based and a hybrid P300 electromyographic-based mode of control. MAIN OUTCOME MEASURES: System usability was evaluated according to the following outcome measures within 3 domains: (1) effectiveness (overall system accuracy and P300-based BCI accuracy); (2) efficiency (throughput time and users' workload); and (3) satisfaction (users' satisfaction). We also considered the information transfer rate and time for selection. RESULTS: Findings obtained in healthy participants were in favor of a higher usability of the hybrid control as compared with the nonhybrid. A similar trend was indicated by the observational results gathered from each of the 3 potential end-users. CONCLUSIONS: The proposed hybrid BCI control modality could provide end-users with severe motor disability with an option to exploit some residual muscular activity, which could not be fully reliable for properly controlling an assistive technology device. The findings reported in this pilot study encourage the implementation of a clinical trial involving a large cohort of end-users.


Subject(s)
Brain-Computer Interfaces , Disabled Persons/rehabilitation , Nervous System Diseases/rehabilitation , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Patient Satisfaction , Pilot Projects , Rehabilitation Centers , Self-Help Devices , User-Computer Interface
13.
Arch Phys Med Rehabil ; 96(3 Suppl): S46-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25721547

ABSTRACT

OBJECTIVE: To evaluate the feasibility and usability of an assistive technology (AT) prototype designed to be operated with conventional/alternative input channels and a P300-based brain-computer interface (BCI) in order to provide users who have different degrees of muscular impairment resulting from amyotrophic lateral sclerosis (ALS) with communication and environmental control applications. DESIGN: Proof-of-principle study with a convenience sample. SETTING: An apartment-like space designed to be fully accessible by people with motor disabilities for occupational therapy, placed in a neurologic rehabilitation hospital. PARTICIPANTS: End-users with ALS (N=8; 5 men, 3 women; mean age ± SD, 60 ± 12 y) recruited by a clinical team from an ALS center. INTERVENTIONS: Three experimental conditions based on (1) a widely validated P300-based BCI alone; (2) the AT prototype operated by a conventional/alternative input device tailored to the specific end-user's residual motor abilities; and (3) the AT prototype accessed by a P300-based BCI. These 3 conditions were presented to all participants in 3 different sessions. MAIN OUTCOME MEASURES: System usability was evaluated in terms of effectiveness (accuracy), efficiency (written symbol rate, time for correct selection, workload), and end-user satisfaction (overall satisfaction) domains. A comparison of the data collected in the 3 conditions was performed. RESULTS: Effectiveness and end-user satisfaction did not significantly differ among the 3 experimental conditions. Condition III was less efficient than condition II as expressed by the longer time for correct selection. CONCLUSIONS: A BCI can be used as an input channel to access an AT by persons with ALS, with no significant reduction of usability.


Subject(s)
Amyotrophic Lateral Sclerosis/rehabilitation , Brain-Computer Interfaces , Disabled Persons/rehabilitation , Self-Help Devices , Aged , Communication Aids for Disabled , Electroencephalography , Environment , Female , Humans , Male , Middle Aged , Rehabilitation Centers , User-Computer Interface
14.
Neuroimage ; 83: 438-49, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23791916

ABSTRACT

In recent years, network analyses have been used to evaluate brain reorganization following stroke. However, many studies have often focused on single topological scales, leading to an incomplete model of how focal brain lesions affect multiple network properties simultaneously and how changes on smaller scales influence those on larger scales. In an EEG-based experiment on the performance of hand motor imagery (MI) in 20 patients with unilateral stroke, we observed that the anatomic lesion affects the functional brain network on multiple levels. In the beta (13-30 Hz) frequency band, the MI of the affected hand (Ahand) elicited a significantly lower smallworldness and local efficiency (Eloc) versus the unaffected hand (Uhand). Notably, the abnormal reduction in Eloc significantly depended on the increase in interhemispheric connectivity, which was in turn determined primarily by the rise of regional connectivity in the parieto-occipital sites of the affected hemisphere. Further, in contrast to the Uhand MI, in which significantly high connectivity was observed for the contralateral sensorimotor regions of the unaffected hemisphere, the regions with increased connectivity during the Ahand MI lay in the frontal and parietal regions of the contralaterally affected hemisphere. Finally, the overall sensorimotor function of our patients, as measured by Fugl-Meyer Assessment (FMA) index, was significantly predicted by the connectivity of their affected hemisphere. These results improve on our understanding of stroke-induced alterations in functional brain networks.


Subject(s)
Imagination , Motor Cortex/physiopathology , Movement Disorders/physiopathology , Movement , Nerve Net/physiopathology , Stroke/physiopathology , Adult , Aged , Brain Mapping , Female , Humans , Male , Middle Aged , Movement Disorders/etiology , Reproducibility of Results , Sensitivity and Specificity , Stroke/complications
15.
Trials ; 24(1): 736, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974284

ABSTRACT

BACKGROUND: Electroencephalography (EEG)-based brain-computer interfaces (BCIs) allow to modulate the sensorimotor rhythms and are emerging technologies for promoting post-stroke motor function recovery. The Promotoer study aims to assess the short and long-term efficacy of the Promotoer system, an EEG-based BCI assisting motor imagery (MI) practice, in enhancing post-stroke functional hand motor recovery. This paper details the statistical analysis plan of the Promotoer study. METHODS: The Promotoer study is a randomized, controlled, assessor-blinded, single-centre, superiority trial, with two parallel groups and a 1:1 allocation ratio. Subacute stroke patients are randomized to EEG-based BCI-assisted MI training or to MI training alone (i.e. no BCI). An internal pilot study for sample size re-assessment is planned. The primary outcome is the effectiveness of the Upper Extremity Fugl-Meyer Assessment (UE-FMA) score. Secondary outcomes include clinical, functional, and user experience scores assessed at the end of intervention and at follow-up. Neurophysiological assessments are also planned. Effectiveness formulas have been specified, and intention-to-treat and per-protocol populations have been defined. Statistical methods for comparisons of groups and for development of a predictive score of significant improvement are described. Explorative subgroup analyses and methodology to handle missing data are considered. DISCUSSION: The Promotoer study will provide robust evidence for the short/long-term efficacy of the Promotoer system in subacute stroke patients undergoing a rehabilitation program. Moreover, the development of a predictive score of response will allow transferring of the Promotoer system to optimal clinical practice. By carefully describing the statistical principles and procedures, the statistical analysis plan provides transparency in the analysis of data. TRIAL REGISTRATION: ClinicalTrials.gov NCT04353297 . Registered on April 15, 2020.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Humans , Recovery of Function/physiology , Stroke Rehabilitation/methods , Pilot Projects , Stroke/diagnosis , Stroke/therapy , Stroke/complications , Upper Extremity
16.
Ergonomics ; 55(5): 538-51, 2012.
Article in English | MEDLINE | ID: mdl-22455372

ABSTRACT

The Farwell and Donchin P300 speller interface is one of the most widely used brain-computer interface (BCI) paradigms for writing text. Recent studies have shown that the recognition accuracy of the P300 speller decreases significantly when eye movement is impaired. This report introduces the GeoSpell interface (Geometric Speller), which implements a stimulation framework for a P300-based BCI that has been optimised for operation in covert visual attention. We compared the Geospell with the P300 speller interface under overt attention conditions with regard to effectiveness, efficiency and user satisfaction. Ten healthy subjects participated in the study. The performance of the GeoSpell interface in covert attention was comparable with that of the P300 speller in overt attention. As expected, the effectiveness of the spelling decreased with the new interface in covert attention. The NASA task load index (TLX) for workload assessment did not differ significantly between the two modalities. PRACTITIONER SUMMARY: This study introduces and evaluates a gaze-independent, P300-based brain-computer interface, the efficacy and user satisfaction of which were comparable with those off the classical P300 speller. Despite a decrease in effectiveness due to the use of covert attention, the performance of the GeoSpell far exceeded the threshold of accuracy with regard to effective spelling.


Subject(s)
Brain/physiology , Communication Aids for Disabled , Software , User-Computer Interface , Adult , Female , Humans , Italy , Male , Writing , Young Adult
17.
Front Hum Neurosci ; 16: 868419, 2022.
Article in English | MEDLINE | ID: mdl-35721361

ABSTRACT

Brain-computer interface (BCI) can provide people with motor disabilities with an alternative channel to access assistive technology (AT) software for communication and environmental interaction. Multiple sclerosis (MS) is a chronic disease of the central nervous system that mostly starts in young adulthood and often leads to a long-term disability, possibly exacerbated by the presence of fatigue. Patients with MS have been rarely considered as potential BCI end-users. In this pilot study, we evaluated the usability of a hybrid BCI (h-BCI) system that enables both a P300-based BCI and conventional input devices (i.e., muscular dependent) to access mainstream applications through the widely used AT software for communication "Grid 3." The evaluation was performed according to the principles of the user-centered design (UCD) with the aim of providing patients with MS with an alternative control channel (i.e., BCI), potentially less sensitive to fatigue. A total of 13 patients with MS were enrolled. In session I, participants were presented with a widely validated P300-based BCI (P3-speller); in session II, they had to operate Grid 3 to access three mainstream applications with (1) an AT conventional input device and (2) the h-BCI. Eight patients completed the protocol. Five out of eight patients with MS were successfully able to access the Grid 3 via the BCI, with a mean online accuracy of 83.3% (± 14.6). Effectiveness (online accuracy), satisfaction, and workload were comparable between the conventional AT inputs and the BCI channel in controlling the Grid 3. As expected, the efficiency (time for correct selection) resulted to be significantly lower for the BCI with respect to the AT conventional channels (Z = 0.2, p < 0.05). Although cautious due to the limited sample size, these preliminary findings indicated that the BCI control channel did not have a detrimental effect with respect to conventional AT channels on the ability to operate an AT software (Grid 3). Therefore, we inferred that the usability of the two access modalities was comparable. The integration of BCI with commercial AT input devices to access a widely used AT software represents an important step toward the introduction of BCIs into the AT centers' daily practice.

18.
Front Hum Neurosci ; 16: 1040816, 2022.
Article in English | MEDLINE | ID: mdl-36545350

ABSTRACT

Background: Disorders of Consciousness (DoC) are clinical conditions following a severe acquired brain injury (ABI) characterized by absent or reduced awareness, known as coma, Vegetative State (VS)/Unresponsive Wakefulness Syndrome (VS/UWS), and Minimally Conscious State (MCS). Misdiagnosis rate between VS/UWS and MCS is attested around 40% due to the clinical and behavioral fluctuations of the patients during bedside consciousness assessments. Given the large body of evidence that some patients with DoC possess "covert" awareness, revealed by neuroimaging and neurophysiological techniques, they are candidates for intervention with brain-computer interfaces (BCIs). Objectives: The aims of the present work are (i) to describe the characteristics of BCI systems based on electroencephalography (EEG) performed on DoC patients, in terms of control signals adopted to control the system, characteristics of the paradigm implemented, classification algorithms and applications (ii) to evaluate the performance of DoC patients with BCI. Methods: The search was conducted on Pubmed, Web of Science, Scopus and Google Scholar. The PRISMA guidelines were followed in order to collect papers published in english, testing a BCI and including at least one DoC patient. Results: Among the 527 papers identified with the first run of the search, 27 papers were included in the systematic review. Characteristics of the sample of participants, behavioral assessment, control signals employed to control the BCI, the classification algorithms, the characteristics of the paradigm, the applications and performance of BCI were the data extracted from the study. Control signals employed to operate the BCI were: P300 (N = 19), P300 and Steady-State Visual Evoked Potentials (SSVEP; hybrid system, N = 4), sensorimotor rhythms (SMRs; N = 5) and brain rhythms elicited by an emotional task (N = 1), while assessment, communication, prognosis, and rehabilitation were the possible applications of BCI in DoC patients. Conclusion: Despite the BCI is a promising tool in the management of DoC patients, supporting diagnosis and prognosis evaluation, results are still preliminary, and no definitive conclusions may be drawn; even though neurophysiological methods, such as BCI, are more sensitive to covert cognition, it is suggested to adopt a multimodal approach and a repeated assessment strategy.

19.
Front Hum Neurosci ; 16: 1016862, 2022.
Article in English | MEDLINE | ID: mdl-36483633

ABSTRACT

Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke have proven their efficacy to enhance upper limb motor recovery by reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both central and peripheral activation and are frequently used in assistive BCIs to improve classification performances. However, in a rehabilitative context, brain and muscular features should be extracted to promote a favorable motor outcome, reinforcing not only the volitional control in the central motor system, but also the effective projection of motor commands to target muscles, i.e., central-to-peripheral communication. For this reason, we considered cortico-muscular coupling (CMC) as a feature for a h-BCI devoted to post-stroke upper limb motor rehabilitation. In this study, we performed a pseudo-online analysis on 13 healthy participants (CTRL) and 12 stroke patients (EXP) during executed (CTRL, EXP unaffected arm) and attempted (EXP affected arm) hand grasping and extension to optimize the translation of CMC computation and CMC-based movement detection from offline to online. Results showed that updating the CMC computation every 125 ms (shift of the sliding window) and accumulating two predictions before a final classification decision were the best trade-off between accuracy and speed in movement classification, independently from the movement type. The pseudo-online analysis on stroke participants revealed that both attempted and executed grasping/extension can be classified through a CMC-based movement detection with high performances in terms of classification speed (mean delay between movement detection and EMG onset around 580 ms) and accuracy (hit rate around 85%). The results obtained by means of this analysis will ground the design of a novel non-invasive h-BCI in which the control feature is derived from a combined EEG and EMG connectivity pattern estimated during upper limb movement attempts.

20.
Brain Topogr ; 23(4): 344-54, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20614232

ABSTRACT

In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R(h) as the number of parallel paths and the global network permeability P(h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P(h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R(h). The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.


Subject(s)
Cerebral Cortex/physiopathology , Electroencephalography , Foot/physiopathology , Movement , Nerve Net/physiopathology , Spinal Cord Injuries/physiopathology , Adult , Analysis of Variance , Female , Humans , Male , Models, Neurological , Neural Pathways/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL