Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Dig Dis Sci ; 64(8): 2351-2358, 2019 08.
Article in English | MEDLINE | ID: mdl-31155687

ABSTRACT

BACKGROUND: Thyroid hormone is critical for tissue-organ development, growth, differentiation, and metabolism. In murine models of advanced nonalcoholic steatohepatitis (NASH), the administration of T3 reduced liver triglyceride, repressed liver inflammation, and attenuated injury. In recent studies of patients with NASH, hypothyroidism was noted to be associated with more advanced NASH. These findings suggest that thyroid hormone function might be a modulator of nonalcoholic fatty liver disease (NAFLD) outcomes. AIMS: Herein, we evaluated the correlation between plasma TSH/free T3 (fT3)/free T4 (fT4) levels and (non-invasive) surrogate markers of NAFLD fibrosis. METHODS: We performed a retrospective analysis of 144 patients who were seen in our NASH outpatient clinic between 2015 and 2017. Each patient underwent a standard anthropometric assessment, laboratory and clinical evaluations, and liver stiffness measurements by transient elastography (Fibroscan). Univariate analysis and multivariate linear and logistic regression analysis were used to identify factors independently associated with NASH and advanced fibrosis. RESULTS: Low fT3 values but not TSH and fT4 were associated with higher liver stiffness and higher NAFLD fibrosis score, respectively. fT3 and TSH values correlated significantly with indices of liver disease including INR, albumin, ALT, AST, bilirubin, and platelets. In multivariate analyses, a low fT3 was independently associated with high NFS scores (OR 0.169, CI 0.05-0.54, p = 0.003) and was also associated with high liver stiffness readings (OR 0.326, CI 0.135-0.785, p = 0.001). CONCLUSION: A low-normal thyroid hormone function is predictive of NASH and advanced fibrosis and may have a pathogenic role in modulating NAFLD outcomes.


Subject(s)
Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/complications , Triiodothyronine/blood , Biomarkers/blood , Down-Regulation , Female , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/diagnostic imaging , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Thyrotropin/blood , Thyroxine/blood
2.
Biochim Biophys Acta ; 1862(1): 135-44, 2016 01.
Article in English | MEDLINE | ID: mdl-26529285

ABSTRACT

INTRODUCTION: Liver fibrosis develops when hepatic stellate cells (HSC) are activated into collagen-producing myofibroblasts. In non-alcoholic steatohepatitis (NASH), the adipokine leptin is upregulated, and promotes liver fibrosis by directly activating HSC via the hedgehog pathway. We reported that hedgehog-regulated osteopontin (OPN) plays a key role in promoting liver fibrosis. Herein, we evaluated if OPN mediates leptin-profibrogenic effects in NASH. METHODS: Leptin-deficient (ob/ob) and wild-type (WT) mice were fed control or methionine-choline deficient (MCD) diet. Liver tissues were assessed by Sirius-red, OPN and αSMA IHC, and qRT-PCR for fibrogenic genes. In vitro, HSC with stable OPN (or control) knockdown were treated with recombinant (r)leptin and OPN-neutralizing or sham-aptamers. HSC response to OPN loss was assessed by wound healing assay. OPN-aptamers were also added to precision-cut liver slices (PCLS), and administered to MCD-fed WT (leptin-intact) mice to determine if OPN neutralization abrogated fibrogenesis. RESULTS: MCD-fed WT mice developed NASH-fibrosis, upregulated OPN, and accumulated αSMA+ cells. Conversely, MCD-fed ob/ob mice developed less fibrosis and accumulated fewer αSMA+ and OPN+ cells. In vitro, leptin-treated HSC upregulated OPN, αSMA, collagen 1α1 and TGFß mRNA by nearly 3-fold, but this effect was blunted by OPN loss. Inhibition of PI3K and transduction of dominant negative-Akt abrogated leptin-mediated OPN induction, while constitutive active-Akt upregulated OPN. Finally, OPN neutralization reduced leptin-mediated fibrogenesis in both PCLS and MCD-fed mice. CONCLUSION: OPN overexpression in NASH enhances leptin-mediated fibrogenesis via PI3K/Akt. OPN neutralization significantly reduces NASH fibrosis, reinforcing the potential utility of targeting OPN in the treatment of patients with advanced NASH.


Subject(s)
Leptin/metabolism , Liver Cirrhosis/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Osteopontin/metabolism , Animals , Cell Line , Cells, Cultured , Gene Deletion , Hepatocytes/metabolism , Hepatocytes/pathology , Leptin/genetics , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Osteopontin/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction , Up-Regulation
3.
Clin Sci (Lond) ; 126(12): 845-55, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24438228

ABSTRACT

OPN (osteopontin)) is a Hh (Hedgehog)-regulated cytokine that is up-regulated during chronic liver injury and directly promotes fibrosis. We have reported that Hh signalling enhances viral permissiveness and replication in HCV (hepatitis C virus)-infected cells. Hence we hypothesized that OPN directly promotes HCV replication, and that targeting OPN could be beneficial in HCV. In the present study, we compared the expression of OPN mRNA and protein in HCV (JFH1)-infected Huh7 and Huh7.5 cells, and evaluated whether modulating OPN levels using exogenous OPN ligands (up-regulate OPN) or OPN-specific RNA-aptamers (neutralize OPN) leads to changes in HCV expression. Sera and livers from patients with chronic HCV were analysed to determine whether OPN levels were associated with disease severity or response to therapy. Compared with Huh7 cells, Huh7.5 cells support higher levels of HCV replication (15-fold) and expressed significantly more OPN mRNA (30-fold) and protein. Treating Huh7 cells with OPN ligands led to a dose-related increase in HCV (15-fold) and OPN (8-fold) mRNA. Conversely, treating Huh7.5 cells with OPN-specific RNA aptamers inhibited HCV RNA and protein by >50% and repressed OPN mRNA to basal levels. Liver OPN expression was significantly higher (3-fold) in patients with advanced fibrosis. Serum OPN positively correlated with fibrosis-stage (P=0.009), but negatively correlated with ETBCR (end-of-treatment biochemical response), ETVR (end-of-treatment virological response), SBCR (sustained biochemical response) and SVR (sustained virological response) (P=0.007). The OPN fibrosis score (serum OPN and presence of fibrosis ≥F2) may be a predictor of SVR. In conclusion, OPN is up-regulated in the liver and serum of patients with chronic hepatitis C, and supports increased viral replication. OPN neutralization may be a novel therapeutic strategy in chronic hepatitis C.


Subject(s)
Hepacivirus/physiology , Hepatitis C, Chronic/physiopathology , Osteopontin/physiology , Up-Regulation , Virus Replication , Adult , Base Sequence , DNA Primers , Female , Humans , Male , Middle Aged , Osteopontin/blood , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
4.
Mol Genet Metab Rep ; 37: 101020, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053940

ABSTRACT

Ornithine transcarbamylase deficiency (OTCD) is an X-linked defect of ureagenesis and the most common urea cycle disorder. Patients present with hyperammonemia causing neurological symptoms, which can lead to coma and death. Liver transplantation (LT) is the only curative therapy, but has several limitations including organ shortage, significant morbidity and requirement of lifelong immunosuppression. This study aims to identify the characteristics and outcomes of patients who underwent LT for OTCD. We conducted a retrospective study for OTCD patients from 5 UK centres receiving LT in 3 transplantation centres between 2010 and 2022. Patients' demographics, family history, initial presentation, age at LT, graft type and pre- and post-LT clinical, metabolic, and neurocognitive profile were collected from medical records. A total of 20 OTCD patients (11 males, 9 females) were enrolled in this study. 6/20 had neonatal and 14/20 late-onset presentation. 2/20 patients had positive family history for OTCD and one of them was diagnosed antenatally and received prospective treatment. All patients were managed with standard of care based on protein-restricted diet, ammonia scavengers and supplementation with arginine and/or citrulline before LT. 15/20 patients had neurodevelopmental problems before LT. The indication for LT was presence (or family history) of recurrent metabolic decompensations occurring despite standard medical therapy leading to neurodisability and quality of life impairment. Median age at LT was 10.5 months (6-24) and 66 months (35-156) in neonatal and late onset patients, respectively. 15/20 patients had deceased donor LT (DDLT) and 5/20 had living related donor LT (LDLT). Overall survival was 95% with one patient dying 6 h after LT. 13/20 had complications after LT and 2/20 patients required re-transplantation. All patients discontinued dietary restriction and ammonia scavengers after LT and remained metabolically stable. Patients who had neurodevelopmental problems before LT persisted to have difficulties after LT. 1/5 patients who was reported to have normal neurodevelopment before LT developed behavioural problems after LT, while the remaining 4 maintained their abilities without any reported issues. LT was found to be effective in correcting the metabolic defect, eliminates the risk of hyperammonemia and prolongs patients' survival.

8.
J Clin Invest ; 125(2): 501-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25562318

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases.


Subject(s)
Amine Oxidase (Copper-Containing)/blood , Cell Adhesion Molecules/blood , Gene Expression Regulation, Enzymologic , Leukocytes/enzymology , Liver Cirrhosis/enzymology , Non-alcoholic Fatty Liver Disease/enzymology , Adult , Animals , Cell Line , Cell Movement , Chronic Disease , Cohort Studies , Disease Models, Animal , Female , Hepatitis/enzymology , Hepatitis/pathology , Hepatitis/therapy , Humans , Inflammation/enzymology , Inflammation/pathology , Inflammation/therapy , Leukocytes/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Male , Mice , Mice, Knockout , Middle Aged , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/therapy , Oxidative Stress , Reactive Oxygen Species/metabolism
9.
BMJ ; 343: d7704, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127450
SELECTION OF CITATIONS
SEARCH DETAIL