Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2311854121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38319971

ABSTRACT

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular circadian rhythms in noncancerous and cancerous human breast tissues and their clinical relevance are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For noncancerous breast tissue, inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of luminal A samples exhibit continued, albeit dampened and reprogrammed rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude luminal A tumors. Surprisingly, patients with high-magnitude tumors had reduced 5-y survival. Correspondingly, 3D luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.


Subject(s)
Breast Neoplasms , Circadian Clocks , Humans , Female , Breast Neoplasms/pathology , Circadian Clocks/genetics , Circadian Rhythm , Estrogens , Prognosis
2.
EMBO J ; 40(14): e107182, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34086370

ABSTRACT

Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.


Subject(s)
Endosomes/metabolism , Protein Transport/physiology , Signal Transduction/physiology , Tyrosine/metabolism , Cell Line, Tumor , Endocytosis/physiology , ErbB Receptors/metabolism , Fibroblast Growth Factors/metabolism , Humans , Phosphorylation/physiology
3.
J Mammary Gland Biol Neoplasia ; 29(1): 14, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012440

ABSTRACT

Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Tumor Microenvironment , Humans , Breast Neoplasms/pathology , Animals , Female , Neoplasm Metastasis/pathology , Models, Biological , Disease Models, Animal , Mice
4.
J Mammary Gland Biol Neoplasia ; 28(1): 17, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37450065

ABSTRACT

On 8 December 2022 the organizing committee of the European Network for Breast Development and Cancer labs (ENBDC) held its fifth annual Think Tank meeting in Amsterdam, the Netherlands. Here, we embraced the opportunity to look back to identify the most prominent breakthroughs of the past ten years and to reflect on the main challenges that lie ahead for our field in the years to come. The outcomes of these discussions are presented in this position paper, in the hope that it will serve as a summary of the current state of affairs in mammary gland biology and breast cancer research for early career researchers and other newcomers in the field, and as inspiration for scientists and clinicians to move the field forward.


Subject(s)
Breast Neoplasms , Mammary Glands, Human , Humans , Female , Breast , Biology
5.
J Mammary Gland Biol Neoplasia ; 24(3): 245-256, 2019 09.
Article in English | MEDLINE | ID: mdl-31529195

ABSTRACT

Triple negative breast cancer (TNBC) is the most lethal breast cancer subtype. Extended periods of lactation protect against breast cancer development, but the mechanisms underlying this protection are unknown. We examined the effects of the milk protein alpha-casein over expression in the triple negative MDA-MB-231 breast cancer cell line. The effects of recombinant alpha-casein added exogenously to MDA-MB-231 breast cancer cells, and immortalised human fibroblasts were also investigated. We used transcriptional reporters to understand the signalling pathways downstream of alpha-casein in breast cancer cells and these fibroblasts that were activated by breast cancer cells. To extend our findings to the clinical setting, we analysed public gene expression datasets to further understand the relevance of these signalling pathways in triple negative breast cancer cells and patient samples. Finally, we used small molecular inhibitors to target relevant pathways and highlight these as potential candidates for the treatment of TN breast cancer. High levels of alpha-casein gene expression were predictive of good prognosis across 263 TNBC patient tumour samples. Alpha-casein over expression or exogenous addition reduces cancer stem cell (CSC) activity. HIF-1alpha was identified to be a key downstream target of alpha-casein, in both breast cancer cells and activated fibroblasts, and STAT transcription factors to be upstream of HIF-1alpha. Interestingly, HIF-1alpha is regulated by STAT3 in breast cancer cells, but STAT1 is the regulator of HIF-1alpha in activated fibroblasts. In analysis of 573 TNBC patient samples, alpha-casein expression, inversely correlated to HIF-1alpha, STAT3 and STAT1. STAT1 and STAT3 inhibitors target HIF-1alpha signalling in activated fibroblasts and MDA-MB-231 breast cancer cells respectively, and also abrogate CSC activities. Our findings provide an explanation for the protective effects of lactation in TNBC. Clinical data correlates high alpha-casein expression with increased recurrence-free survival in TNBC patients. Mechanistically, alpha-casein reduces breast cancer stem cell activity in vitro, and STAT3 and STAT1 were identified as regulators of pro-tumorigenic HIF-1alpha signalling in breast cancer cells and fibroblasts respectively.


Subject(s)
Biomarkers, Tumor/metabolism , Caseins/metabolism , Fibroblasts/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/pathology , STAT3 Transcription Factor/metabolism , Triple Negative Breast Neoplasms/pathology , Biomarkers, Tumor/genetics , Caseins/genetics , Cell Proliferation , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neoplastic Stem Cells/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Cells, Cultured
6.
Breast Cancer Res ; 21(1): 130, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31783893

ABSTRACT

BACKGROUND: Late-stage breast cancer preferentially metastasises to bone; despite advances in targeted therapies, this condition remains incurable. The lack of clinically relevant models for studying breast cancer metastasis to a human bone microenvironment has stunted the development of effective treatments for this condition. To address this problem, we have developed humanised mouse models in which breast cancer patient-derived xenografts (PDXs) metastasise to human bone implants with low variability and high frequency. METHODS: To model the human bone environment, bone discs from femoral heads of patients undergoing hip replacement surgery were implanted subcutaneously into NOD/SCID mice. For metastasis studies, 7 patient-derived xenograft tumours (PDX: BB3RC32, ER+ PR+ HER2-; BB2RC08, ER+ PR+ ER2-; BB6RC37, ER- PR- HER2- and BB6RC39, ER+ PR+ HER2+), MDA-MB-231-luc2, T47D-luc2 or MCF7-Luc2 cells were injected into the 4th mammary ducts and metastases monitored by luciferase imaging and confirmed on histological sections. Bone integrity, viability and vascularisation were assessed by uCT, calcein uptake and histomorphometry. Expression profiling of genes/proteins during different stages of metastasis were assessed by whole genome Affymetrix array, real-time PCR and immunohistochemistry. Importance of IL-1 was confirmed following anakinra treatment. RESULTS: Implantation of femoral bone provided a metabolically active, human-specific site for tumour cells to metastasise to. After 4 weeks, bone implants were re-vascularised and demonstrated active bone remodelling (as evidenced by the presence of osteoclasts, osteoblasts and calcein uptake). Restricting bone implants to the use of subchondral bone and introduction of cancer cells via intraductal injection maximised metastasis to human bone implants. MDA-MB-231 cells specifically metastasised to human bone (70% metastases) whereas T47D, MCF7, BB3RC32, BB2RC08, and BB6RC37 cells metastasised to both human bone and mouse bones. Importantly, human bone was the preferred metastatic site especially from ER+ PDX (100% metastasis human bone compared with 20-75% to mouse bone), whereas ER-ve PDX developed metastases in 20% of human and 20% of mouse bone. Breast cancer cells underwent a series of molecular changes as they progressed from primary tumours to bone metastasis including altered expression of IL-1B, IL-1R1, S100A4, CTSK, SPP1 and RANK. Inhibiting IL-1B signalling significantly reduced bone metastasis. CONCLUSIONS: Our reliable and clinically relevant humanised mouse models provide significant advancements in modelling of breast cancer bone metastasis.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Disease Models, Animal , Animals , Biomarkers, Tumor , Biopsy , Bone Neoplasms/diagnosis , Bone and Bones/pathology , Breast Neoplasms/metabolism , Cell Survival , Female , Heterografts , Humans , Immunohistochemistry , Immunophenotyping , Mice , Mice, Inbred NOD , Mice, SCID , Neovascularization, Pathologic , Tumor Microenvironment
7.
BMC Cancer ; 19(1): 351, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30975104

ABSTRACT

BACKGROUND: Optimising breast cancer treatment remains a challenge. Resistance to therapy is a major problem in both ER- and ER+ breast cancer. Tumour recurrence after chemotherapy and/or targeted therapy leads to more aggressive tumours with enhanced metastatic ability. Self-renewing cancer stem cells (CSCs) have been implicated in treatment resistance, recurrence and the development of metastatic disease. METHODS: In this study, we utilised in vitro, in vivo and ex vivo breast cancer models using ER+ MCF-7 and ER- MDA-MB-231 cells, as well as solid and metastatic breast cancer patient samples, to interrogate the effects of FKBPL and its peptide therapeutics on metastasis, endocrine therapy resistant CSCs and DLL4 and Notch4 expression. The effects of FKBPL overexpression or peptide treatment were assessed using a t-test or one-way ANOVA with Dunnett's multiple comparison test. RESULTS: We demonstrated that FKBPL overexpression or treatment with FKBPL-based therapeutics (AD-01, pre-clinical peptide /ALM201, clinical peptide) inhibit i) CSCs in both ER+ and ER- breast cancer, ii) cancer metastasis in a triple negative breast cancer metastasis model and iii) endocrine therapy resistant CSCs in ER+ breast cancer, via modulation of the DLL4 and Notch4 protein and/or mRNA expression. AD-01 was effective at reducing triple negative MDA-MB-231 breast cancer cell migration (n ≥ 3, p < 0.05) and invasion (n ≥ 3, p < 0.001) and this was translated in vivo where AD-01 inhibited breast cancer metastasis in MDA-MB-231-lucD3H1 in vivo model (p < 0.05). In ER+ MCF-7 cells and primary breast tumour samples, we demonstrated that ALM201 inhibits endocrine therapy resistant mammospheres, representative of CSC content (n ≥ 3, p < 0.05). Whilst an in vivo limiting dilution assay, using SCID mice, demonstrated that ALM201 alone or in combination with tamoxifen was very effective at delaying tumour recurrence by 12 (p < 0.05) or 21 days (p < 0.001), respectively, by reducing the number of CSCs. The potential mechanism of action, in addition to CD44, involves downregulation of DLL4 and Notch4. CONCLUSION: This study demonstrates, for the first time, the pre-clinical activity of novel systemic anti-cancer therapeutic peptides, ALM201 and AD-01, in the metastatic setting, and highlights their impact on endocrine therapy resistant CSCs; both areas of unmet clinical need.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Immunophilins/pharmacology , Neoplastic Stem Cells/drug effects , Peptides/pharmacology , Adaptor Proteins, Signal Transducing , Animals , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast/pathology , Breast Neoplasms/pathology , Calcium-Binding Proteins , Cell Line, Tumor , Down-Regulation/drug effects , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunophilins/therapeutic use , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, SCID , Neoplasm Recurrence, Local/prevention & control , Neoplastic Stem Cells/pathology , Peptides/therapeutic use , Receptor, Notch4/metabolism , Signal Transduction/drug effects , Tacrolimus Binding Proteins , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
8.
Proc Natl Acad Sci U S A ; 113(39): E5731-40, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27621461

ABSTRACT

The role of the local microenvironment in influencing cell behavior is central to both normal development and cancer formation. Here, we show that sprouty 1 (SPRY1) modulates the microenvironment to enable proper mammary branching morphogenesis. This process occurs through negative regulation of epidermal growth factor receptor (EGFR) signaling in mammary stroma. Loss of SPRY1 resulted in up-regulation of EGFR-extracellular signal-regulated kinase (ERK) signaling in response to amphiregulin and transforming growth factor alpha stimulation. Consequently, stromal paracrine signaling and ECM remodeling is augmented, leading to increased epithelial branching in the mutant gland. By contrast, down-regulation of EGFR-ERK signaling due to gain of Sprouty function in the stroma led to stunted epithelial branching. Taken together, our results show that modulation of stromal paracrine signaling and ECM remodeling by SPRY1 regulates mammary epithelial morphogenesis during postnatal development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epithelium/growth & development , ErbB Receptors/metabolism , Extracellular Matrix/metabolism , Mammary Glands, Animal/metabolism , Membrane Proteins/metabolism , Morphogenesis , Paracrine Communication , Phosphoproteins/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/deficiency , Amphiregulin/pharmacology , Animals , Cell Movement/drug effects , Collagen/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelium/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation, Developmental/drug effects , Ligands , Male , Mammary Glands, Animal/drug effects , Membrane Proteins/deficiency , Mice, Knockout , Mice, Nude , Morphogenesis/drug effects , Mutation/genetics , Paracrine Communication/drug effects , Phosphoproteins/deficiency , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , Time-Lapse Imaging , Transforming Growth Factor alpha/pharmacology
9.
Breast Cancer Res ; 19(1): 129, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29212519

ABSTRACT

BACKGROUND: The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. METHODS: We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. RESULTS: We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. CONCLUSIONS: These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin-Like Growth Factor I/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Fluorescent Antibody Technique , Gene Expression Profiling , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Insulin-Like Growth Factor I/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
10.
Cancer Metastasis Rev ; 35(4): 547-573, 2016 12.
Article in English | MEDLINE | ID: mdl-28025748

ABSTRACT

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.


Subject(s)
Breast Neoplasms/pathology , Disease Models, Animal , Animals , Female , Heterografts , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Translational Research, Biomedical
11.
Int J Mol Sci ; 18(12)2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29240722

ABSTRACT

G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy. Here, we highlight the GPCR-mediated angiogenic function focusing on the molecular mechanisms and transduction effectors driving the patho-physiological vasculogenesis. Specifically, we describe evidence for the role of heptahelic receptors and associated G proteins in promoting angiogenic responses in pathologic conditions, especially tumor angiogenesis and progression. Likewise, we discuss opportunities to manipulate aberrant GPCR-mediated angiogenic signaling for therapeutic benefit using innovative GPCR-targeted and patient-tailored pharmacological strategies.


Subject(s)
Neovascularization, Pathologic/physiopathology , Neovascularization, Physiologic/physiology , Receptors, G-Protein-Coupled/physiology , Signal Transduction , Animals , Disease Progression , Humans , Models, Biological , Neoplasms/blood supply , Neoplasms/metabolism , Neoplasms/physiopathology , Neovascularization, Pathologic/metabolism , Receptors, G-Protein-Coupled/metabolism
12.
J Mammary Gland Biol Neoplasia ; 21(3-4): 99-109, 2016 12.
Article in English | MEDLINE | ID: mdl-27680982

ABSTRACT

Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Cell Transformation, Neoplastic/pathology , Heterografts/pathology , Neoplasm Metastasis/pathology , Animals , Cell Culture Techniques/methods , Cell Proliferation/physiology , Disease Progression , Female , Humans , Mice , Prospective Studies
13.
Breast Cancer Res ; 18(1): 115, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27887657

ABSTRACT

The ENBDC workshop "Methods in Mammary Gland Development and Cancer" is an established international forum to showcase the latest technical advances in the field. The eighth meeting focused on emerging concepts and technologies for studying normal and neoplastic breast development.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/pathology , Breast/growth & development , Breast/pathology , Animals , Breast Neoplasms/diagnosis , Early Detection of Cancer/methods , Female , High-Throughput Screening Assays , Humans , Systems Biology/methods
14.
Breast Cancer Res ; 18(1): 57, 2016 05 28.
Article in English | MEDLINE | ID: mdl-27233359

ABSTRACT

BACKGROUND: Observational studies suggest weight loss and energy restriction reduce breast cancer risk. Intermittent energy restriction (IER) reduces weight to the same extent as, or more than equivalent continuous energy restriction (CER) but the effects of IER on normal breast tissue and systemic metabolism as indicators of breast cancer risk are unknown. METHODS: We assessed the effect of IER (two days of 65 % energy restriction per week) for one menstrual cycle on breast tissue gene expression using Affymetrix GeneChips, adipocyte size by morphometry, and systemic metabolism (insulin resistance, lipids, serum and urine metabolites, lymphocyte gene expression) in 23 overweight premenopausal women at high risk of breast cancer. Unsupervised and supervised analyses of matched pre and post IER biopsies in 20 subjects were performed, whilst liquid and gas chromatography mass spectrometry assessed corresponding changes in serum and urine metabolites in all subjects after the two restricted and five unrestricted days of the IER. RESULTS: Women lost 4.8 % (±2.0 %) of body weight and 8.0 % (±5.0 %) of total body fat. Insulin resistance (homeostatic model assessment (HOMA)) reduced by 29.8 % (±17.8 %) on the restricted days and by 11 % (±34 %) on the unrestricted days of the IER. Five hundred and twenty-seven metabolites significantly increased or decreased during the two restricted days of IER. Ninety-one percent of these returned to baseline after 5 days of normal eating. Eleven subjects (55 %) displayed reductions in energy restriction-associated metabolic gene pathways including lipid synthesis, gluconeogenesis and glycogen synthesis. Some of these women also had increases in genes associated with breast epithelial cell differentiation (secretoglobulins, milk proteins and mucins) and decreased collagen synthesis (TNMD, PCOLCE2, TIMP4). There was no appreciable effect of IER on breast gene expression in the other nine subjects. These groups did not differ in the degree of changes in weight, total body fat, fat cell size or serum or urine metabolomic markers. Corresponding gene changes were not seen in peripheral blood lymphocytes. CONCLUSION: The transcriptional response to IER is variable in breast tissue, which was not reflected in the systemic response, which occurred in all subjects. The mechanisms of breast responsiveness/non-responsiveness require further investigation. TRIAL REGISTRATION: ISRCTN77916487 31/07/2012.


Subject(s)
Energy Metabolism , Gene Expression Regulation , Mammary Glands, Human/metabolism , Adult , Biomarkers , Biopsy , Body Composition , Body Weight , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caloric Restriction , Cluster Analysis , Female , Hormones/blood , Humans , Insulin Resistance , Lipids/blood , Lymphocytes/immunology , Lymphocytes/metabolism , Menstrual Cycle , Metabolomics/methods , Middle Aged , Quantitative Trait, Heritable
15.
Stem Cells ; 33(2): 327-41, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25187396

ABSTRACT

Cancer stem cells (CSCs) can avoid or efficiently repair DNA damage from radio and chemotherapy, which suggests they play a role in disease recurrence. Twenty percentage of patients treated with surgery and radiotherapy for ductal carcinoma in situ (DCIS) of the breast recur and our previous data show that high grade DCIS have increased numbers of CSCs. Here, we investigate the role of focal adhesion kinase (FAK) and Wnt pathways in DCIS stem cells and their capacity to survive irradiation. Using DCIS cell lines and patient samples, we demonstrate that CSC-enriched populations are relatively radioresistant and possess high FAK activity. Immunohistochemical studies of active FAK in DCIS tissue show high expression was associated with a shorter median time to recurrence. Treatment with a FAK inhibitor or FAK siRNA in nonadherent and three-dimensional matrigel culture reduced mammosphere formation, and potentiated the effect of 2 Gy irradiation. Moreover, inhibition of FAK in vitro and in vivo decreased self-renewal capacity, levels of Wnt3a and B-Catenin revealing a novel FAK-Wnt axis regulating DCIS stem cell activity. Overall, these data establish that the FAK-Wnt axis is a promising target to eradicate self-renewal capacity and progression of human breast cancers.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Focal Adhesion Kinase 1/metabolism , Neoplastic Stem Cells , Radiation Tolerance/radiation effects , Wnt Signaling Pathway/radiation effects , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Carcinoma, Ductal, Breast/enzymology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/radiotherapy , Cell Line, Tumor , Female , Focal Adhesion Kinase 1/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Mice , Mice, Nude , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , RNA, Small Interfering/pharmacology , Radiation Tolerance/drug effects , Wnt3A Protein/metabolism , beta Catenin/metabolism
16.
Nanotechnology ; 27(6): 065103, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26754042

ABSTRACT

Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully  apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.


Subject(s)
Ferric Compounds/chemistry , Hyaluronan Receptors/metabolism , Nanoparticles/chemistry , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems/methods , Ferric Compounds/administration & dosage , Humans , Magnetics/methods , Nanomedicine/methods , Nanoparticles/administration & dosage , Neoplastic Cells, Circulating/metabolism , Neoplastic Stem Cells/metabolism , Tissue Distribution/physiology , Gemcitabine
17.
Breast Cancer Res ; 17: 119, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26330220

ABSTRACT

The seventh annual meeting of the European Network of Breast Development and Cancer Laboratories, held in Weggis, Switzerland, in April 2015, was focused on techniques for the study of normal and cancer stem cells, cell fate decisions, cancer initiation and progression.


Subject(s)
Breast Neoplasms/pathology , Mammary Glands, Animal/pathology , Mammary Glands, Human/pathology , Animals , Cell Differentiation/physiology , Disease Progression , Female , Humans , Neoplastic Stem Cells/pathology
18.
Breast Cancer Res ; 16(5): 446, 2014 Sep 28.
Article in English | MEDLINE | ID: mdl-25467785

ABSTRACT

Breast cancer is an increasing public health problem. Substantial advances have been made in the treatment of breast cancer, but the introduction of methods to predict women at elevated risk and prevent the disease has been less successful. Here, we summarize recent data on newer approaches to risk prediction, available approaches to prevention, how new approaches may be made, and the difficult problem of using what we already know to prevent breast cancer in populations. During 2012, the Breast Cancer Campaign facilitated a series of workshops, each covering a specialty area of breast cancer to identify gaps in our knowledge. The risk-and-prevention panel involved in this exercise was asked to expand and update its report and review recent relevant peer-reviewed literature. The enlarged position paper presented here highlights the key gaps in risk-and-prevention research that were identified, together with recommendations for action. The panel estimated from the relevant literature that potentially 50% of breast cancer could be prevented in the subgroup of women at high and moderate risk of breast cancer by using current chemoprevention (tamoxifen, raloxifene, exemestane, and anastrozole) and that, in all women, lifestyle measures, including weight control, exercise, and moderating alcohol intake, could reduce breast cancer risk by about 30%. Risk may be estimated by standard models potentially with the addition of, for example, mammographic density and appropriate single-nucleotide polymorphisms. This review expands on four areas: (a) the prediction of breast cancer risk, (b) the evidence for the effectiveness of preventive therapy and lifestyle approaches to prevention, (c) how understanding the biology of the breast may lead to new targets for prevention, and (d) a summary of published guidelines for preventive approaches and measures required for their implementation. We hope that efforts to fill these and other gaps will lead to considerable advances in our efforts to predict risk and prevent breast cancer over the next 10 years.


Subject(s)
Breast Neoplasms/prevention & control , Alcohol Drinking/adverse effects , Animals , Breast Neoplasms/etiology , Female , Guidelines as Topic , Humans , Pediatric Obesity/complications , Risk Assessment , Risk Factors , Sedentary Behavior
19.
Breast Cancer Res ; 15(5): 313, 2013.
Article in English | MEDLINE | ID: mdl-24103450

ABSTRACT

The European Network for Breast Development and Cancer (ENBDC) Workshop on 'Methods in Mammary Gland Development and Cancer' has grown into the essential, international technical discussion forum for scientists with interests in the normal and neoplastic breast. The fifth ENBDC meeting was held in Weggis, Switzerland in April, 2013, and focussed on emerging, state-of-the-art techniques for the study of non-coding RNA, lineage tracing, tumor heterogeneity, metastasis and metabolism.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Lineage , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , RNA, Untranslated , Animals , Breast Neoplasms/pathology , Female , Humans , Neoplasm Metastasis
20.
Breast Cancer Res ; 15(2): R21, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23497505

ABSTRACT

INTRODUCTION: Although oestrogen is essential for the development of the normal breast, adult mammary stem cells are known to be oestrogen receptor alpha (ER) negative and rely on paracrine signals in the mammary epithelium for mediation of developmental cues. However, little is known about how systemic oestrogen regulates breast cancer stem cell (CSC) activity. METHODS: Here, we tested the effects of oestrogen on CSC activity in vitro and in vivo and investigated which paracrine signalling pathways locally mediate oestrogen effects. RESULTS: CSC-enriched populations (ESA+CD44+CD24low) sorted from ER positive patient derived and established cell lines have low or absent ER expression. However, oestrogen stimulated CSC activity demonstrated by increased mammosphere and holoclone formation in vitro and tumour formation in vivo. This effect was abrogated by the anti-oestrogen tamoxifen or ER siRNA. These data suggest that the oestrogen response is mediated through paracrine signalling from non-CSCs to CSCs. We have, therefore, investigated both epidermal growth factor (EGF) and Notch receptor signals downstream of oestrogen. We demonstrate that gefitinib (epidermal growth factor receptor (EGFR) inhibitor) and gamma secretase inhibitors (Notch inhibitor) block oestrogen-induced CSC activity in vitro and in vivo but GSIs more efficiently reduce CSC frequency. CONCLUSIONS: These data establish that EGF and Notch receptor signalling pathways operate downstream of oestrogen in the regulation of ER negative CSCs.


Subject(s)
Breast Neoplasms/drug therapy , ErbB Receptors/metabolism , Estrogens/pharmacology , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/drug effects , Receptors, Estrogen/metabolism , Receptors, Notch/metabolism , Animals , Blotting, Western , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Transformation, Neoplastic , ErbB Receptors/genetics , Female , Flow Cytometry , Humans , Immunoenzyme Techniques , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Paracrine Communication , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/genetics , Receptors, Notch/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL