Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neurophysiol ; 132(3): 643-652, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39015076

ABSTRACT

We frequently interact with textured surfaces with both our feet and hands. Like texture's importance for grasping, texture perception via the foot sole might provide important signals about the stability of a surface, aiding in maintaining balance. However, how textures are perceived by the foot, and especially under the high forces experienced during walking, is unknown. The current study builds on extensive research investigating texture perception at the hand by presenting everyday textures to the foot while stepping onto them, exploring them with the foot while sitting, and exploring them with the hand. Participants rated each texture along three perceptual dimensions: roughness, hardness, and stickiness. Participants also rated how stable their posture felt when standing upon each texture. Results show that perceptual ratings of each textural dimension were highly correlated across conditions. Hardness exhibited the greatest consistency and stickiness the weakest. Moreover, correlations between stepping and exploration with the foot were lower than those between exploration with the foot and exploration with the hand, suggesting that mode of interaction (high vs. low force) impacts perception more than body region used (foot vs. hand). On an individual level, correlations between conditions were higher than those between participants, suggesting that differences are greater between individuals than between mode of interaction or body region. When investigating the relationship to perceived stability, only hardness contributed significantly, with harder surfaces rated as more stable. Overall, tactile perception appears consistent across body regions and interaction modes, although differences in perception are greater during walking.NEW & NOTEWORTHY We frequently interact with textured surfaces using our feet, but little is known about how textures on the foot sole are perceived as compared with the hand. Here, we show that roughness, hardness, and stickiness ratings are broadly consistent when stepping on textures, exploring them with the foot sole, or with the hand. Hardness also contributes to perceived stability.


Subject(s)
Foot , Hand , Touch Perception , Walking , Humans , Walking/physiology , Male , Female , Foot/physiology , Touch Perception/physiology , Adult , Hand/physiology , Young Adult , Sitting Position
2.
J R Soc Interface ; 20(203): 20230052, 2023 06.
Article in English | MEDLINE | ID: mdl-37376872

ABSTRACT

The human foot sole is the primary interface with the external world during balance and walking, and also provides important tactile information on the state of contact. However, prior studies on plantar pressure have focused mostly on summary metrics such as overall force or centre of pressure under limited conditions. Here, we recorded spatio-temporal plantar pressure patterns with high spatial resolution while participants completed a wide range of daily activities, including balancing, locomotion and jumping tasks. Contact area differed across task categories, but was only moderately correlated with the overall force experienced by the foot sole. The centre of pressure was often located outside the contact area or in locations experiencing relatively low pressure, and therefore a result of disparate contact regions spread widely across the foot. Non-negative matrix factorization revealed low-dimensional spatial complexity that increased during interaction with unstable surfaces. Additionally, pressure patterns at the heel and metatarsals decomposed into separately located and robustly identifiable components, jointly capturing most variance in the signal. These results suggest optimal sensor placements to capture task-relevant spatial information and provide insight into how pressure varies spatially on the foot sole during a wide variety of natural behaviours.


Subject(s)
Gait , Walking , Humans , Pressure , Foot , Touch , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL