Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 389(7): 589-601, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37272516

ABSTRACT

BACKGROUND: Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are malignant brain tumors that cause considerable disability and premature death. Vorasidenib, an oral brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, showed preliminary activity in IDH-mutant gliomas. METHODS: In a double-blind, phase 3 trial, we randomly assigned patients with residual or recurrent grade 2 IDH-mutant glioma who had undergone no previous treatment other than surgery to receive either oral vorasidenib (40 mg once daily) or matched placebo in 28-day cycles. The primary end point was imaging-based progression-free survival according to blinded assessment by an independent review committee. The key secondary end point was the time to the next anticancer intervention. Crossover to vorasidenib from placebo was permitted on confirmation of imaging-based disease progression. Safety was also assessed. RESULTS: A total of 331 patients were assigned to receive vorasidenib (168 patients) or placebo (163 patients). At a median follow-up of 14.2 months, 226 patients (68.3%) were continuing to receive vorasidenib or placebo. Progression-free survival was significantly improved in the vorasidenib group as compared with the placebo group (median progression-free survival, 27.7 months vs. 11.1 months; hazard ratio for disease progression or death, 0.39; 95% confidence interval [CI], 0.27 to 0.56; P<0.001). The time to the next intervention was significantly improved in the vorasidenib group as compared with the placebo group (hazard ratio, 0.26; 95% CI, 0.15 to 0.43; P<0.001). Adverse events of grade 3 or higher occurred in 22.8% of the patients who received vorasidenib and in 13.5% of those who received placebo. An increased alanine aminotransferase level of grade 3 or higher occurred in 9.6% of the patients who received vorasidenib and in no patients who received placebo. CONCLUSIONS: In patients with grade 2 IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next intervention. (Funded by Servier; INDIGO ClinicalTrials.gov number, NCT04164901.).


Subject(s)
Antineoplastic Agents , Glioma , Neoplasm Recurrence, Local , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease Progression , Double-Blind Method , Glioma/drug therapy , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Neoplasm Recurrence, Local/drug therapy , Pyridines/adverse effects , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use
2.
Mol Cell ; 67(1): 128-138.e7, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28648777

ABSTRACT

Mutations in cancer reprogram amino acid metabolism to drive tumor growth, but the molecular mechanisms are not well understood. Using an unbiased proteomic screen, we identified mTORC2 as a critical regulator of amino acid metabolism in cancer via phosphorylation of the cystine-glutamate antiporter xCT. mTORC2 phosphorylates serine 26 at the cytosolic N terminus of xCT, inhibiting its activity. Genetic inhibition of mTORC2, or pharmacologic inhibition of the mammalian target of rapamycin (mTOR) kinase, promotes glutamate secretion, cystine uptake, and incorporation into glutathione, linking growth factor receptor signaling with amino acid uptake and utilization. These results identify an unanticipated mechanism regulating amino acid metabolism in cancer, enabling tumor cells to adapt to changing environmental conditions.


Subject(s)
Amino Acid Transport System y+/metabolism , Brain Neoplasms/enzymology , Cysteine/metabolism , Glioblastoma/enzymology , Glutamine/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , A549 Cells , Amino Acid Transport System y+/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Glutathione/biosynthesis , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/genetics , Mutation , Phosphorylation , Protein Binding , Proteomics/methods , RNA Interference , Serine , TOR Serine-Threonine Kinases/genetics , Tandem Mass Spectrometry , Time Factors , Transfection , Tumor Microenvironment
3.
Curr Opin Oncol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39011735

ABSTRACT

PURPOSE OF REVIEW: The Response Assessment in Neuro-Oncology (RANO) 2.0 criteria aim at improving the standardization and reliability of treatment response assessment in clinical trials studying central nervous system (CNS) gliomas. This review presents the evidence supporting RANO 2.0 updates and discusses which concepts can be applicable to the clinical practice, particularly in the clinical radiographic reads. RECENT FINDINGS: Updates in RANO 2.0 were supported by recent retrospective analyses of multicenter data from recent clinical trials. As proposed in RANO 2.0, in tumors receiving radiation therapy, the post-RT MRI scan should be used as a reference baseline for the following scans, as opposed to the pre-RT scan, and radiographic findings suggesting progression within three months after radiation therapy completion should be verified with confirmatory scans. Volumetric assessments should be considered, when available, especially for low-grade gliomas, and the evaluation of nonenhancing disease should have a marginal role in glioblastoma. However, the radiographic reads in the clinical setting also benefit from aspects that lie outside RANO 2.0 criteria, such as qualitative evaluations, patient-specific clinical considerations, and advanced imaging. SUMMARY: While RANO 2.0 criteria are meant for the standardization of the response assessment in clinical trials, some concepts have the potential to improve patients' management in the clinical practice.

4.
J Neurooncol ; 166(1): 129-142, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224404

ABSTRACT

BACKGROUND: Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS: Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS: We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION: dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.


Subject(s)
Brain Neoplasms , Glioma , Guanine , Humans , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Dacarbazine/pharmacology , DNA/genetics , DNA/metabolism , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Guanine/analogs & derivatives , O(6)-Methylguanine-DNA Methyltransferase/genetics , Temozolomide/pharmacology
5.
NMR Biomed ; 36(6): e4785, 2023 06.
Article in English | MEDLINE | ID: mdl-35704275

ABSTRACT

Amine-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is particularly valuable as an amine- and pH-sensitive imaging technique in brain tumors, targeting the intrinsically high concentration of amino acids with exchangeable amine protons and reduced extracellular pH in brain tumors. Amine-weighted CEST MRI contrast is dependent on the glioma genotype, likely related to differences in degree of malignancy and metabolic behavior. Amine-weighted CEST MRI may provide complementary value to anatomic imaging in conventional and exploratory therapies in brain tumors, including chemoradiation, antiangiogenic therapies, and immunotherapies. Continual improvement and clinical testing of amine-weighted CEST MRI has the potential to greatly impact patients with brain tumors by understanding vulnerabilities in the tumor microenvironment that may be therapeutically exploited.


Subject(s)
Amines , Brain Neoplasms , Humans , Amines/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/chemistry , Protons , Tumor Microenvironment
6.
J Neurooncol ; 163(2): 417-427, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37294422

ABSTRACT

PURPOSE: There is limited knowledge about the associations between sodium and proton MRI measurements in brain tumors. The purpose of this study was to quantify intra- and intertumoral correlations between sodium, diffusion, and perfusion MRI in human gliomas. METHODS: Twenty glioma patients were prospectively studied on a 3T MRI system with multinuclear capabilities. Three mutually exclusive tumor volumes of interest (VOIs) were segmented: contrast-enhancing tumor (CET), T2/FLAIR hyperintense non-enhancing tumor (NET), and necrosis. Median and voxel-wise associations between apparent diffusion coefficient (ADC), normalized relative cerebral blood volume (nrCBV), and normalized sodium measurements were quantified for each VOI. RESULTS: Both relative sodium concentration and ADC were significantly higher in areas of necrosis compared to NET (P = 0.003 and P = 0.008, respectively) and CET (P = 0.02 and P = 0.02). Sodium concentration was higher in CET compared to NET (P = 0.04). Sodium and ADC were higher in treated compared to treatment-naïve gliomas within NET (P = 0.006 and P = 0.01, respectively), and ADC was elevated in CET (P = 0.03). Median ADC and sodium concentration were positively correlated across patients in NET (r = 0.77, P < 0.0001) and CET (r = 0.84, P < 0.0001), but not in areas of necrosis (r = 0.45, P = 0.12). Median nrCBV and sodium concentration were negatively correlated across patients in areas of NET (r=-0.63, P = 0.003). Similar associations were observed when examining voxel-wise correlations within VOIs. CONCLUSION: Sodium MRI is positively correlated with proton diffusion MRI measurements in gliomas, likely reflecting extracellular water. Unique areas of multinuclear MRI contrast may be useful in future studies to understand the chemistry of the tumor microenvironment.


Subject(s)
Brain Neoplasms , Glioma , Humans , Protons , Magnetic Resonance Imaging , Glioma/diagnostic imaging , Glioma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging , Perfusion , Necrosis , Tumor Microenvironment
7.
Eur Radiol ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882836

ABSTRACT

OBJECTIVE: To determine the feasibility and biologic correlations of dynamic susceptibility contrast (DSC), dynamic contrast enhanced (DCE), and quantitative maps derived from contrast leakage effects obtained simultaneously in gliomas using dynamic spin-and-gradient-echo echoplanar imaging (dynamic SAGE-EPI) during a single contrast injection. MATERIALS AND METHODS: Thirty-eight patients with enhancing brain gliomas were prospectively imaged with dynamic SAGE-EPI, which was processed to compute traditional DSC metrics (normalized relative cerebral blood flow [nrCBV], percentage of signal recovery [PSR]), DCE metrics (volume transfer constant [Ktrans], extravascular compartment [ve]), and leakage effect metrics: ΔR2,ss* (reflecting T2*-leakage effects), ΔR1,ss (reflecting T1-leakage effects), and the transverse relaxivity at tracer equilibrium (TRATE, reflecting the balance between ΔR2,ss* and ΔR1,ss). These metrics were compared between patient subgroups (treatment-naïve [TN] vs recurrent [R]) and biological features (IDH status, Ki67 expression). RESULTS: In IDH wild-type gliomas (IDHwt-i.e., glioblastomas), previous exposure to treatment determined lower TRATE (p = 0.002), as well as higher PSR (p = 0.006), Ktrans (p = 0.17), ΔR1,ss (p = 0.035), ve (p = 0.006), and ADC (p = 0.016). In IDH-mutant gliomas (IDHm), previous treatment determined higher Ktrans and ΔR1,ss (p = 0.026). In TN-gliomas, dynamic SAGE-EPI metrics tended to be influenced by IDH status (p ranging 0.09-0.14). TRATE values above 142 mM-1s-1 were exclusively seen in TN-IDHwt, and, in TN-gliomas, this cutoff had 89% sensitivity and 80% specificity as a predictor of Ki67 > 10%. CONCLUSIONS: Dynamic SAGE-EPI enables simultaneous quantification of brain tumor perfusion and permeability, as well as mapping of novel metrics related to cytoarchitecture (TRATE) and blood-brain barrier disruption (ΔR1,ss), with a single contrast injection. CLINICAL RELEVANCE STATEMENT: Simultaneous DSC and DCE analysis with dynamic SAGE-EPI reduces scanning time and contrast dose, respectively alleviating concerns about imaging protocol length and gadolinium adverse effects and accumulation, while providing novel leakage effect metrics reflecting blood-brain barrier disruption and tumor tissue cytoarchitecture. KEY POINTS: • Traditionally, perfusion and permeability imaging for brain tumors requires two separate contrast injections and acquisitions. • Dynamic spin-and-gradient-echo echoplanar imaging enables simultaneous perfusion and permeability imaging. • Dynamic spin-and-gradient-echo echoplanar imaging provides new image contrasts reflecting blood-brain barrier disruption and cytoarchitecture characteristics.

8.
Curr Oncol Rep ; 25(9): 1047-1055, 2023 09.
Article in English | MEDLINE | ID: mdl-37402043

ABSTRACT

PURPOSE OF REVIEW: Innovative clinical trial designs for glioblastoma (GBM) are needed to expedite drug discovery. Phase 0, window of opportunity, and adaptive designs have been proposed, but their advanced methodologies and underlying biostatistics are not widely known. This review summarizes phase 0, window of opportunity, and adaptive phase I-III clinical trial designs in GBM tailored to physicians. RECENT FINDINGS: Phase 0, window of opportunity, and adaptive trials are now being implemented for GBM. These trials can remove ineffective therapies earlier during drug development and improve trial efficiency. There are two ongoing adaptive platform trials: GBM Adaptive Global Innovative Learning Environment (GBM AGILE) and the INdividualized Screening trial of Innovative GBM Therapy (INSIGhT). The future clinical trials landscape in GBM will increasingly involve phase 0, window of opportunity, and adaptive phase I-III studies. Continued collaboration between physicians and biostatisticians will be critical for implementing these trial designs.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Research Design , Drug Development
9.
Mol Cell ; 60(2): 307-18, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26455392

ABSTRACT

Epidermal growth factor receptor (EGFR) gene amplification and mutations are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples, and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy.


Subject(s)
Brain Neoplasms/genetics , Epigenesis, Genetic , ErbB Receptors/genetics , Forkhead Transcription Factors/genetics , Glioblastoma/genetics , Nerve Tissue Proteins/genetics , SOX9 Transcription Factor/genetics , Adult , Animals , Azepines/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Child , ErbB Receptors/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Nerve Tissue Proteins/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction , Transcriptome , Triazoles/pharmacology
10.
Proc Natl Acad Sci U S A ; 117(20): 11085-11096, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32358191

ABSTRACT

Glioblastoma (GBM) is the deadliest adult brain cancer, and all patients ultimately succumb to the disease. Radiation therapy (RT) provides survival benefit of 6 mo over surgery alone, but these results have not improved in decades. We report that radiation induces a glioma-initiating cell phenotype, and we have identified trifluoperazine (TFP) as a compound that interferes with this phenotype conversion. TFP causes loss of radiation-induced Nanog mRNA expression, and activation of GSK3 with consecutive posttranslational reduction in p-Akt, Sox2, and ß-catenin protein levels. TFP did not alter the intrinsic radiation sensitivity of glioma-initiating cells (GICs). Continuous treatment with TFP and a single dose of radiation reduced the number of GICs in vivo and prolonged survival in syngeneic and patient-derived orthotopic xenograft (PDOX) mouse models of GBM. Our findings suggest that the combination of a dopamine receptor antagonist with radiation enhances the efficacy of RT in GBM by preventing radiation-induced phenotype conversion of radiosensitive non-GICs into treatment-resistant, induced GICs (iGICs).


Subject(s)
Dopamine Antagonists/pharmacology , Glioblastoma/metabolism , Phenotype , Receptors, Dopamine/drug effects , Trifluoperazine/pharmacology , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Disease Models, Animal , Dopamine Antagonists/therapeutic use , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/radiotherapy , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Glioma/radiotherapy , Glycogen Synthase Kinase 3/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , RNA, Messenger/metabolism , Radiation Tolerance , SOXB1 Transcription Factors , Trifluoperazine/therapeutic use , Xenograft Model Antitumor Assays , beta Catenin
11.
J Neurooncol ; 160(1): 115-125, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36053452

ABSTRACT

PURPOSE: To quantify the radiation dose distribution and lesion morphometry (shape) at baseline, prior to chemoradiation, and at the time of radiographic recurrence in patients with glioblastoma (GBM). METHODS: The IMRT dose distribution, location of the center of mass, sphericity, and solidity of the contrast enhancing tumor at baseline and the time of tumor recurrence was quantified in 48 IDH wild-type GBM who underwent postoperative IMRT (2 Gy daily for total of 60 Gy) with concomitant and adjuvant temozolomide. RESULTS: Average radiation dose within enhancing tumor at baseline and recurrence was ≥ 60 Gy. Centroid location of the enhancing tumor shifted an average of 11.3 mm at the time of recurrence with respect to pre-IMRT location. A positive correlation was observed between change in centroid location and PFS in MGMT methylated patients (P = 0.0007) and Cox multivariate regression confirmed centroid distance from baseline was associated with PFS when accounting for clinical factors (P = 0.0189). Lesion solidity was higher at recurrence compared to baseline (P = 0.0118). Tumors that progressed > 12 weeks after IMRT were significantly more spherical (P = 0.0094). CONCLUSION: Most GBMs recur local within therapeutic IMRT doses; however, tumors with longer PFS occurred further from the original tumor location and were more solid and/or nodular.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Glioblastoma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Temozolomide/therapeutic use , Radiation Dosage , Antineoplastic Agents, Alkylating/therapeutic use
12.
J Neurooncol ; 159(3): 509-518, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35842871

ABSTRACT

PURPOSE: Pseudoprogression (PsP) remains an elusive and clinically important, yet ill-defined, phenomena that, generally, involves a period of early radiographic progression (enhancement) followed by a period of radiographic stability or regression. In the current study, we utilized data from the control arm of a phase III clinical trial in newly-diagnosed glioblastoma to explore imaging characteristics of "clinically-defined PsP", or early radiographic progression (PFS < 6 months from chemoradiation) followed by a long post-progression residual overall survival (ROS > 12 months). METHODS: One hundred sixty-nine patients with newly-diagnosed GBM from the control arm of the AVAglio trial (NCT00943826) who presented with early radiographic progressive disease (PD) (< 6 months) were included. Clinical characteristics, topographical patterns, and radiomic features were compared between newly-diagnosed GBM exhibiting early PD and early death (< 12-month ROS, "true PD") with those exhibiting early PD and a long residual survival (> 12-month ROS, "clinically-defined PsP"). RESULTS: "Clinically-defined PsP" occurred to 38.5% of patients with early PD, and was more associated with MGMT methylation (P = 0.02), younger age (P = 0.003), better neurological performance (P = 0.01), and lower contrast-enhancing tumor volume (P = 0.002) at baseline. GBM showing "true PD" occurred more frequently in the right internal capsule, thalamus, lentiform nucleus, and temporal lobe than those with "clinical PsP". Radiomic analysis predicted "clinical PsP" with > 70% accuracy on the validation dataset. CONCLUSION: Patients with early PD that eventually exhibit "clinically-defined PsP" have distinct clinical, molecular, and MRI characteristics. This information may be useful for treating clinicians to better understand the potential risks and outcome in patients exhibiting early radiographic changes following chemoradiation.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Chemoradiotherapy/methods , Disease Progression , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Humans , Incidence , Magnetic Resonance Imaging , Reactive Oxygen Species
13.
J Neurooncol ; 152(3): 573-582, 2021 May.
Article in English | MEDLINE | ID: mdl-33704629

ABSTRACT

PURPOSE: Although tumor localization and 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (FDOPA) uptake may have an association, preferential tumor localization in relation to FDOPA uptake is yet to be investigated in lower-grade gliomas (LGGs). This study aimed to identify differences in the frequency of tumor localization between FDOPA hypometabolic and hypermetabolic LGGs using a probabilistic radiographic atlas. METHODS: Fifty-one patients with newly diagnosed LGG (WHO grade II, 29; III, 22; isocitrate dehydrogenase wild-type, 21; mutant 1p19q non-codeleted,16; mutant codeleted, 14) who underwent FDOPA positron emission tomography (PET) were retrospectively selected. Semiautomated tumor segmentation on FLAIR was performed. Patients with LGGs were separated into two groups (FDOPA hypometabolic and hypermetabolic LGGs) according to the normalized maximum standardized uptake value of FDOPA PET (a threshold of the uptake in the striatum) within the segmented regions. Spatial normalization procedures to build a 3D MRI-based atlas using each segmented region were validated by an analysis of differential involvement statistical mapping. RESULTS: Superimposition of regions of interest showed a high number of hypometabolic LGGs localized in the frontal lobe, while a high number of hypermetabolic LGGs was localized in the insula, putamen, and temporal lobe. The statistical mapping revealed that hypometabolic LGGs occurred more frequently in the superior frontal gyrus (close to the supplementary motor area), while hypermetabolic LGGs occurred more frequently in the insula. CONCLUSION: Radiographic atlases revealed preferential frontal lobe localization for FDOPA hypometabolic LGGs, which may be associated with relatively early detection.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnostic imaging , Dihydroxyphenylalanine , Glioma/diagnostic imaging , Humans , Isocitrate Dehydrogenase , Neoplasm Grading , Positron-Emission Tomography , Retrospective Studies
14.
Neuroradiology ; 63(6): 857-868, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33106922

ABSTRACT

PURPOSE: Epidermal growth factor receptor (EGFR) amplification promotes gliomagenesis and is linked to lack of oxygen within the tumor microenvironment. Using hypoxia-sensitive spin-and-gradient echo echo-planar imaging and perfusion MRI, we investigated the influence of EGFR amplification on tissue oxygen availability and utilization in human gliomas. METHODS: This study included 72 histologically confirmed EGFR-amplified and non-amplified glioma patients. Reversible transverse relaxation rate (R2'), relative cerebral blood volume (rCBV), and relative oxygen extraction fraction (rOEF) were calculated for the contrast-enhancing and non-enhancing tumor regions. Using Student t test or Wilcoxon rank-sum test, median R2', rCBV, and rOEF were compared between EGFR-amplified and non-amplified gliomas. ROC analysis was performed to assess the ability of imaging characteristics to discriminate EGFR amplification status. Overall survival (OS) was determined using univariate and multivariate cox models. Kaplan-Meier survival curves were plotted and compared using the log-rank test. RESULTS: EGFR amplified gliomas exhibited significantly higher median R2' and rOEF than non-amplified gliomas. ROC analysis suggested that R2' (AUC = 0.7190; P = 0.0048) and rOEF (AUC = 0.6959; P = 0.0156) could separate EGFR status. Patients with EGFR-amplified gliomas had a significantly shorter OS than non-amplified patients. Univariate cox regression analysis determined both R2' and rOEF significantly influence OS. No significant difference was observed in rCBV between patient cohorts nor was rCBV found to be an effective differentiator of EGFR status. CONCLUSION: Imaging of tumor oxygen characteristics revealed EGFR-amplified gliomas to be more hypoxic and contribute to shorter patient survival than EGFR non-amplified gliomas.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , ErbB Receptors/genetics , Glioma/diagnostic imaging , Glioma/genetics , Humans , Hypoxia , Magnetic Resonance Imaging , Oxygen , Tumor Microenvironment
15.
J Biol Chem ; 294(51): 19740-19751, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31712311

ABSTRACT

In cancer, aberrant growth factor receptor signaling reprograms cellular metabolism and global gene transcription to drive aggressive growth, but the underlying mechanisms are not well-understood. Here we show that in the highly lethal brain tumor glioblastoma (GBM), mTOR complex 2 (mTORC2), a critical core component of the growth factor signaling system, couples acetyl-CoA production with nuclear translocation of histone-modifying enzymes including pyruvate dehydrogenase and class IIa histone deacetylases to globally alter histone acetylation. Integrated analyses in orthotopic mouse models and in clinical GBM samples reveal that mTORC2 controls iron metabolisms via histone H3 acetylation of the iron-related gene promoter, promoting tumor cell survival. These results nominate mTORC2 as a critical epigenetic regulator of iron metabolism in cancer.


Subject(s)
Brain Neoplasms/metabolism , Epigenesis, Genetic , Glioblastoma/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Iron/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Active Transport, Cell Nucleus , Animals , Cell Line, Tumor , Cell Survival , Gene Expression Regulation, Neoplastic , Histones/chemistry , Humans , Immediate-Early Proteins/metabolism , Metabolome , Mice , Neoplasm Transplantation , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Signal Transduction
16.
J Neurooncol ; 147(3): 643-652, 2020 May.
Article in English | MEDLINE | ID: mdl-32239430

ABSTRACT

INTRODUCTION: There is growing evidence that the subventricular zone (SVZ) plays a key role in glioblastoma (GBM) tumorigenesis. However, little is known regarding how the SVZ, which is a harbor for adult neural stem cells, may be influenced by chemoradiation. The current diffusion-weighted imaging (DWI) study explored ipsilateral and contralateral alterations in the anterior SVZ in GBM patients with posterior enhancing lesions following chemoradiation. METHODS: Forty GBM patients with tumor involvement in the posterior SVZ (mean age = 57 ± 10; left-hemisphere N = 25; right-hemisphere N = 15) were evaluated using DWI before and after chemoradiation. Regions-of-interest were drawn on the ipsilesional and contralesional anterior SVZ on apparent diffusion coefficient (ADC) maps for both timepoints. ADC histogram analysis was performed by modeling a bimodal, double Gaussian distribution to obtain ADCL, defined as the mean of the lower Gaussian distribution. RESULTS: The ipsilesional SVZ had lower ADCL values compared to the contralesional SVZ before treatment (mean difference = 0.025 µm2/ms; P = 0.007). Following chemoradiation, these changes were no longer observed (mean difference = 0.0025 µm2/ms; P > 0.5), as ADCL values of the ipsilesional SVZ increased (mean difference = 0.026 µm2/ms; P = 0.037). An increase in ipsilesional ADCL was associated with shorter progression-free (P = 0.0119) and overall survival (P = 0.0265). CONCLUSIONS: These preliminary observations suggest baseline asymmetry as well as asymmetric changes in the SVZ proximal (ipsilesional) to the tumor with respect to contralesional SVZ regions may be present in GBM, potentially implicating this region in tumorigenesis and/or treatment resistance.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/pathology , Aged , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging , Female , Glioblastoma/pathology , Humans , Male , Middle Aged , Treatment Outcome
17.
J Neurooncol ; 147(1): 135-145, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31981013

ABSTRACT

PURPOSE: To examine whether the rate of change in maximum 18F-FDOPA PET uptake and the rate of change in non-enhancing tumor volume could predict malignant transformation and residual overall survival (OS) in low grade glioma (LGG) patients who received serial 18F-FDOPA PET and MRI scans. METHODS: 27 LGG patients with ≥ 2 18F-FDOPA PET and MRI scans between 2003 and 2016 were included. The rate of change in FLAIR volume (uL/day) and maximum normalized 18F-FDOPA specific uptake value (nSUVmax/month), were compared between histological and molecular subtypes. General linear models (GLMs) were used to integrate clinical information with MR-PET measurements to predict malignant transformation. Cox univariate and multivariable regression analyses were performed to identify imaging and clinical risk factors related to OS. RESULTS: A GLM using patient age, treatment, the rate of change in FLAIR and 18F-FDOPA nSUVmax could predict malignant transformation with > 67% sensitivity and specificity (AUC = 0.7556, P = 0.0248). A significant association was observed between OS and continuous rates of change in PET uptake (HR = 1.0212, P = 0.0034). Cox multivariable analysis confirmed that continuous measures of the rate of change in PET uptake was an independent predictor of OS (HR = 1.0242, P = 0.0033); however, stratification of patients based on increasing or decreasing rate of change in FLAIR (HR = 2.220, P = 0.025), PET uptake (HR = 2.148, P = 0.0311), or both FLAIR and PET (HR = 2.354, P = 0.0135) predicted OS. CONCLUSIONS: The change in maximum normalized 18F-FDOPA PET uptake, with or without clinical information and rate of change in tumor volume, may be useful for predicting the risk of malignant transformation and estimating residual survival in patients with LGG.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Cell Transformation, Neoplastic/metabolism , Dihydroxyphenylalanine/analogs & derivatives , Glioma/diagnostic imaging , Glioma/metabolism , Positron-Emission Tomography , Tumor Burden , Adult , Aged , Aged, 80 and over , Brain Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Dihydroxyphenylalanine/pharmacokinetics , Female , Glioma/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Sensitivity and Specificity , Survival Analysis , Young Adult
18.
J Neurooncol ; 149(2): 337-346, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32929644

ABSTRACT

PURPOSE: To assess whether hypermetabolically-defined regions of interest (ROIs) on 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) positron emission tomography (PET) could be used to evaluate physiological features and whether there are measurable differences between molecular subtypes and tumor grades. METHODS: Sixty-eight treatment-naïve glioma patients who underwent FDOPA PET and magnetic resonance imaging (MRI) were retrospectively included. Fluid-attenuated inversion recovery hyperintense regions (FLAIRROI) were segmented. FDOPA hypermetabolic regions (FDOPAROI, tumor-to-striatum ratios > 1) within FLAIRROI were extracted. Normalized maximum standardized uptake value (nSUVmax), volume of each ROI, and median relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) within FLAIRROI or FDOPAROI were calculated. Imaging metrics were compared using Students t or Mann-Whitney U tests. Area under the curve (AUC) of receiver-operating characteristic curves were used to determine whether imaging metrics within FLAIRROI or FDOPAROI can discriminate different molecular statuses or grades. RESULTS: Using either FLAIRROI or FDOPAROI, the nSUVmax and rCBV were significantly higher and the ADC was lower in isocitrate dehydrogenase (IDH) wild-type than mutant gliomas, and in higher-grade gliomas (HGGs) than lower-grade gliomas (LGGs). The FDOPAROI volume was significantly higher in 1p19q codeleted than non-codeleted gliomas, and in HGGs than LGGs. Although not significant, imaging metrics extracted by FDOPAROI discriminated molecular status and tumor grade more accurately than those extracted by FLAIRROI (AUC of IDH status, 0.87 vs. 0.82; 1p19q status, 0.78 vs. 0.73; grade, 0.87 vs. 0.76). CONCLUSION: FDOPA hypermetabolic ROI may extract useful imaging features of gliomas, which can illuminate biological differences between different molecular status or tumor grades.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Glioma/pathology , Magnetic Resonance Imaging/methods , Mutation , Positron-Emission Tomography/methods , Aged , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Female , Follow-Up Studies , Glioma/genetics , Glioma/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies
19.
J Neurooncol ; 142(3): 587-595, 2019 May.
Article in English | MEDLINE | ID: mdl-30806888

ABSTRACT

PURPOSE: The objective of the current study was to explore the efficacy of using pH-weighted amine CEST-EPI as a potential non-invasive imaging biomarker for treatment response and/or failure in recurrent GBM patients treated with bevacizumab. METHOD: A total of 11 patients with recurrent GBM treated with bevacizumab were included in this prospective study. CEST-EPI, perfusion MRI, and standardized anatomic MRI were obtained in patients before and after bevacizumab administration. CEST-EPI measures of magnetization transfer ratio asymmetry (MTRasym) at 3 ppm were used for pH-weighted imaging contrast. Multiple measures were examined for their association with progression-free survival (PFS). RESULT: Tumor acidity, measured with MTRasym at 3 ppm, was significantly reduced in both contrast enhancing and non-enhancing tumor after bevacizumab (p = 0.0002 and p < 0.00001, respectively). The reduction in tumor acidity in both contrast enhancing and non-enhancing tumor was linearly correlated with PFS (p = 0.044 and p = 0.00026, respectively). In 9 of the 11 patients, areas of residual acidity were localized to areas of tumor recurrence, typically around 2 months prior to radiographic progression. Univariate (p = 0.006) and multivariate Cox regression controlling for age (p = 0.009) both indicated that change in tumor acidity (ΔMTRasym at 3 ppm) was a significant predictor of PFS. CONCLUSIONS: This pilot study suggests pH-weighted amine CEST MRI may have value as a non-invasive, early imaging biomarker for bevacizumab treatment response and failure. Early decreases MTRasym at 3.0 ppm in recurrent GBM after bevacizumab may be associated with better PFS. Residual or emerging regions of acidity may colocalize to the site of tumor recurrence.


Subject(s)
Amines/chemistry , Bevacizumab/adverse effects , Biomarkers/analysis , Echo-Planar Imaging/methods , Glioblastoma/pathology , Neoplasm Recurrence, Local/pathology , Neuroimaging/methods , Adult , Aged , Antineoplastic Agents, Immunological/adverse effects , Echo-Planar Imaging/instrumentation , Female , Follow-Up Studies , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Humans , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/drug therapy , Prospective Studies , Treatment Failure
20.
Cancer ; 124(7): 1438-1448, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29266174

ABSTRACT

BACKGROUND: Angiopoietins contribute to tumor angiogenesis and may be upregulated as a compensatory factor after vascular endothelial growth factor (VEGF) blockade. The authors performed a phase 2 and biomarker study to evaluate trebananib, an angiopoietin 1 and angiopoietin 2 blocking peptibody, with and without bevacizumab in patients with recurrent glioblastoma. METHODS: Forty-eight patients who had bevacizumab-naive, recurrent glioblastoma were treated with trebananib (30 mg/kg weekly) as single agent (n = 11) or combined with bevacizumab (n = 37). The primary endpoint was 6-month progression-free survival rate as determined by investigator review. Circulating biomarker levels were assessed before and after study therapy. RESULTS: Trebananib was well tolerated as monotherapy and did not enhance bevacizumab-associated toxicity. Trebananib had no single-agent activity, and all treated patients exhibited progressive disease within 2 months. The 6-month progression-free survival rate for trebananib plus bevacizumab was 24.3% (95% confidence interval [CI], 12.1%-38.8%); whereas the median overall survival was 9.5 months (95% CI, 7.5-4.7 months), and the 12-month overall survival rate was 37.8% (95% CI, 22.6%-53.0%). Baseline and post-treatment changes in circulating vascular VEGF and interleukin-8 levels were correlated with survival among patients who received trebananib plus bevacizumab. CONCLUSIONS: Angiopoietin 1 and angiopoietin 2 inhibition with trebananib was ineffective as monotherapy and did not enhance the ability of VEGF blockade with bevacizumab to improve the outcomes of patients with recurrent glioblastoma. Cancer 2018;124:1438-48. © 2017 American Cancer Society.


Subject(s)
Angiopoietins/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Adult , Aged , Aged, 80 and over , Angiopoietins/metabolism , Bevacizumab/administration & dosage , Cohort Studies , Female , Follow-Up Studies , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Prognosis , Recombinant Fusion Proteins/administration & dosage , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL