Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25352552

ABSTRACT

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Subject(s)
Databases, Nucleic Acid , Genomics , Animals , Epigenesis, Genetic , Genetic Variation , Genome, Human , Humans , Internet , Mice , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid , Software
2.
Nucleic Acids Res ; 42(Database issue): D749-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24316576

ABSTRACT

Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.


Subject(s)
Databases, Genetic , Genomics , Animals , Chordata/genetics , Genetic Variation , Humans , Internet , Mice , Molecular Sequence Annotation , Phenotype , Rats
3.
Nucleic Acids Res ; 41(Database issue): D48-55, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23203987

ABSTRACT

The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces.


Subject(s)
Databases, Genetic , Genomics , Animals , Gene Expression Regulation , Genetic Variation , Humans , Internet , Mice , Molecular Sequence Annotation , Rats , Software , Zebrafish/genetics
4.
Nucleic Acids Res ; 40(Database issue): D84-90, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22086963

ABSTRACT

The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project.


Subject(s)
Databases, Genetic , Genomics , Animals , Gene Expression Regulation , Genetic Variation , Humans , Mice , Molecular Sequence Annotation , Rats
5.
Nucleic Acids Res ; 39(Database issue): D800-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21045057

ABSTRACT

The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.


Subject(s)
Databases, Genetic , Genomics , Animals , Genetic Variation , Humans , Mice , Molecular Sequence Annotation , Rats , Regulatory Sequences, Nucleic Acid , Software , Zebrafish/genetics
6.
Nucleic Acids Res ; 38(Database issue): D557-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906699

ABSTRACT

Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Access to Information , Animals , Computational Biology/trends , Databases, Protein , Genetic Variation , Genomics/methods , Humans , Information Storage and Retrieval/methods , Internet , Protein Structure, Tertiary , Software , Species Specificity
7.
BMC Bioinformatics ; 12: 361, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21906284

ABSTRACT

BACKGROUND: Increasingly large amounts of DNA sequencing data are being generated within the Wellcome Trust Sanger Institute (WTSI). The traditional file system struggles to handle these increasing amounts of sequence data. A good data management system therefore needs to be implemented and integrated into the current WTSI infrastructure. Such a system enables good management of the IT infrastructure of the sequencing pipeline and allows biologists to track their data. RESULTS: We have chosen a data grid system, iRODS (Rule-Oriented Data management systems), to act as the data management system for the WTSI. iRODS provides a rule-based system management approach which makes data replication much easier and provides extra data protection. Unlike the metadata provided by traditional file systems, the metadata system of iRODS is comprehensive and allows users to customize their own application level metadata. Users and IT experts in the WTSI can then query the metadata to find and track data.The aim of this paper is to describe how we designed and used (from both system and user viewpoints) iRODS as a data management system. Details are given about the problems faced and the solutions found when iRODS was implemented. A simple use case describing how users within the WTSI use iRODS is also introduced. CONCLUSIONS: iRODS has been implemented and works as the production system for the sequencing pipeline of the WTSI. Both biologists and IT experts can now track and manage data, which could not previously be achieved. This novel approach allows biologists to define their own metadata and query the genomic data using those metadata.


Subject(s)
Database Management Systems , Genomics , Academies and Institutes , Computer Systems , Databases, Genetic , Genome , Humans , Sequence Analysis, DNA
8.
Genome Res ; 14(5): 971-5, 2004 May.
Article in English | MEDLINE | ID: mdl-15123594

ABSTRACT

Ensembl is a software project to automatically annotate large eukaryotic genomes and release them freely into the public domain. The project currently automatically annotates 10 complete genomes. This makes very large demands on compute resources, due to the vast number of sequence comparisons that need to be executed. To circumvent the financial outlay often associated with classical supercomputing environments, farms of multiple, lower-cost machines have now become the norm and have been deployed successfully with this project. The architecture and design of farms containing hundreds of compute nodes is complex and nontrivial to implement. This study will define and explain some of the essential elements to consider when designing such systems. Server architecture and network infrastructure are discussed with a particular emphasis on solutions that worked and those that did not (often with fairly spectacular consequences). The aim of the study is to give the reader, who may be implementing a large-scale biocompute project, an insight into some of the pitfalls that may be waiting ahead.


Subject(s)
Computational Biology/methods , Software , Computer Systems , Database Management Systems , Databases, Genetic , Online Systems , Software Design
9.
Genome Res ; 14(5): 925-8, 2004 May.
Article in English | MEDLINE | ID: mdl-15078858

ABSTRACT

Ensembl (http://www.ensembl.org/) is a bioinformatics project to organize biological information around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of individual genomes, and of the synteny and orthology relationships between them. It is also a framework for integration of any biological data that can be mapped onto features derived from the genomic sequence. Ensembl is available as an interactive Web site, a set of flat files, and as a complete, portable open source software system for handling genomes. All data are provided without restriction, and code is freely available. Ensembl's aims are to continue to "widen" this biological integration to include other model organisms relevant to understanding human biology as they become available; to "deepen" this integration to provide an ever more seamless linkage between equivalent components in different species; and to provide further classification of functional elements in the genome that have been previously elusive.


Subject(s)
Computational Biology/trends
SELECTION OF CITATIONS
SEARCH DETAIL