Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cochrane Database Syst Rev ; 3: CD003331, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38451843

ABSTRACT

BACKGROUND: People with heart failure experience substantial disease burden that includes low exercise tolerance, poor health-related quality of life (HRQoL), increased risk of mortality and hospital admission, and high healthcare costs. The previous 2018 Cochrane review reported that exercise-based cardiac rehabilitation (ExCR) compared to no exercise control shows improvement in HRQoL and hospital admission amongst people with heart failure, as well as possible reduction in mortality over the longer term, and that these reductions appear to be consistent across patient and programme characteristics. Limitations noted by the authors of this previous Cochrane review include the following: (1) most trials were undertaken in patients with heart failure with reduced (< 45%) ejection fraction (HFrEF), and women, older people, and those with heart failure with preserved (≥ 45%) ejection fraction (HFpEF) were under-represented; and (2) most trials were undertaken in a hospital or centre-based setting. OBJECTIVES: To assess the effects of ExCR on mortality, hospital admission, and health-related quality of life of adults with heart failure. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO and Web of Science without language restriction on 13 December 2021. We also checked the bibliographies of included studies, identified relevant systematic reviews, and two clinical trials registers. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared ExCR interventions (either exercise only or exercise as part of a comprehensive cardiac rehabilitation) with a follow-up of six months or longer versus a no-exercise control (e.g. usual medical care). The study population comprised adults (≥ 18 years) with heart failure - either HFrEF or HFpEF. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were all-cause mortality, mortality due to heart failure, all-cause hospital admissions, heart failure-related hospital admissions, and HRQoL. Secondary outcomes were costs and cost-effectiveness. We used GRADE to assess the certainty of the evidence. MAIN RESULTS: We included 60 trials (8728 participants) with a median of six months' follow-up. For this latest update, we identified 16 new trials (2945 new participants), in addition to the previously identified 44 trials (5783 existing participants). Although the existing evidence base predominantly includes patients with HFrEF, with New York Heart Association (NYHA) classes II and III receiving centre-based ExCR programmes, a growing body of trials includes patients with HFpEF with ExCR undertaken in a home-based setting. All included trials employed a usual care comparator with a formal no-exercise intervention as well as a wide range of active comparators, such as education, psychological intervention, or medical management. The overall risk of bias in the included trials was low or unclear, and we mostly downgraded the certainty of evidence of outcomes upon GRADE assessment. There was no evidence of a difference in the short term (up to 12 months' follow-up) in the pooled risk of all-cause mortality when comparing ExCR versus usual care (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.71 to 1.21; absolute effects 5.0% versus 5.8%; 34 trials, 36 comparisons, 3941 participants; low-certainty evidence). Only a few trials reported information on whether participants died due to heart failure. Participation in ExCR versus usual care likely reduced the risk of all-cause hospital admissions (RR 0.69, 95% CI 0.56 to 0.86; absolute effects 15.9% versus 23.8%; 23 trials, 24 comparisons, 2283 participants; moderate-certainty evidence) and heart failure-related hospital admissions (RR 0.82, 95% CI 0.49 to 1.35; absolute effects 5.6% versus 6.4%; 10 trials; 10 comparisons, 911 participants; moderate-certainty evidence) in the short term. Participation in ExCR likely improved short-term HRQoL as measured by the Minnesota Living with Heart Failure (MLWHF) questionnaire (lower scores indicate better HRQoL and a difference of 5 points or more indicates clinical importance; mean difference (MD) -7.39 points, 95% CI -10.30 to -4.77; 21 trials, 22 comparisons, 2699 participants; moderate-certainty evidence). When pooling HRQoL data measured by any questionnaire/scale, we found that ExCR may improve HRQoL in the short term, but the evidence is very uncertain (33 trials, 37 comparisons, 4769 participants; standardised mean difference (SMD) -0.52, 95% CI -0.70 to -0.34; very-low certainty evidence). ExCR effects appeared to be consistent across different models of ExCR delivery: centre- versus home-based, exercise dose, exercise only versus comprehensive programmes, and aerobic training alone versus aerobic plus resistance programmes. AUTHORS' CONCLUSIONS: This updated Cochrane review provides additional randomised evidence (16 trials) to support the conclusions of the previous 2018 version of the review. Compared to no exercise control, whilst there was no evidence of a difference in all-cause mortality in people with heart failure, ExCR participation likely reduces the risk of all-cause hospital admissions and heart failure-related hospital admissions, and may result in important improvements in HRQoL. Importantly, this updated review provides additional evidence supporting the use of alternative modes of ExCR delivery, including home-based and digitally-supported programmes. Future ExCR trials need to focus on the recruitment of traditionally less represented heart failure patient groups including older patients, women, and those with HFpEF.


Subject(s)
Cardiac Rehabilitation , Heart Failure , Humans , Cardiac Rehabilitation/methods , Exercise , Exercise Therapy , Quality of Life
2.
J Card Fail ; 29(5): 760-770, 2023 05.
Article in English | MEDLINE | ID: mdl-36332897

ABSTRACT

BACKGROUND: The 6-minute walk test (6MWT) is widely used to measure exercise capacity; however, the magnitude of change that is clinically meaningful for individuals is not well established in heart failure with reduced ejection fraction (HFrEF). OBJECTIVE: To calculate the minimal clinically important difference (MCID) for change in exercise capacity in the 6MWT in iron-deficient populations with HFrEF. METHODS: In this pooled secondary analysis of the FAIR-HF and CONFIRM-HF trials, mean changes in the 6MWT from baseline to weeks 12 and 24 were calculated and calibrated against the Patient Global Assessment (PGA) tool (clinical anchor) to derive MCIDs in improvement and deterioration. RESULTS: Of 760 patients included in the 2 trials, 6MWT and PGA data were available for 680 (89%) and 656 (86%) patients at weeks 12 and 24, respectively. The mean 6MWT distance at baseline was 281 ± 103 meters. There was a modest correlation between changes in 6MWT and PGA from baseline to week 12 (r = 0.31; P < 0.0001) and week 24 (r = 0.43; P < 0.0001). Respective estimates (95% confidence intervals) of MCID in 6MWT at weeks 12 and 24 were 14 meters (5;23) and 15 meters (3;27) for a "little improvement" (vs no change), 20 meters (10;30) and 24 meters (12;36) for moderate improvement vs a "little improvement,", -11 meters (-32;9.2) and -31 meters (-53;-8) for a "little deterioration" (vs no change), and -84 meters (-144;-24) and -69 meters (-118;-20) for "moderate deterioration" vs a "little deterioration". CONCLUSIONS: The MCID for improvement in exercise capacity in the 6MWT was 14 meters-15 meters in patients with HFrEF and iron deficiency. These MCIDs can aid clinical interpretation of study data.


Subject(s)
Heart Failure , Iron Deficiencies , Humans , Walk Test , Heart Failure/diagnosis , Heart Failure/complications , Stroke Volume , Minimal Clinically Important Difference
3.
J Card Fail ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33663906

ABSTRACT

In this document, we propose a universal definition of heart failure (HF) as the following: HF is a clinical syndrome with symptoms and or signs caused by a structural and/or functional cardiac abnormality and corroborated by elevated natriuretic peptide levels and or objective evidence of pulmonary or systemic congestion. We propose revised stages of HF as follows. At-risk for HF (Stage A), for patients at risk for HF but without current or prior symptoms or signs of HF and without structural or biomarkers evidence of heart disease. Pre-HF (stage B), for patients without current or prior symptoms or signs of HF, but evidence of structural heart disease or abnormal cardiac function, or elevated natriuretic peptide levels. HF (Stage C), for patients with current or prior symptoms and/or signs of HF caused by a structural and/or functional cardiac abnormality. Advanced HF (Stage D), for patients with severe symptoms and/or signs of HF at rest, recurrent hospitalizations despite guideline-directed management and therapy (GDMT), refractory or intolerant to GDMT, requiring advanced therapies such as consideration for transplant, mechanical circulatory support, or palliative care. Finally, we propose a new and revised classification of HF according to left ventricular ejection fraction (LVEF). The classification includes HF with reduced EF (HFrEF): HF with an LVEF of ≤40%; HF with mildly reduced EF (HFmrEF): HF with an LVEF of 41% to 49%; HF with preserved EF (HFpEF): HF with an LVEF of ≥50%; and HF with improved EF (HFimpEF): HF with a baseline LVEF of ≤40%, a ≥10-point increase from baseline LVEF, and a second measurement of LVEF of >40%.

4.
Cochrane Database Syst Rev ; 1: CD003331, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30695817

ABSTRACT

BACKGROUND: Chronic heart failure (HF) is a growing global health challenge. People with HF experience substantial burden that includes low exercise tolerance, poor health-related quality of life (HRQoL), increased risk of mortality and hospital admission, and high healthcare costs. The previous (2014) Cochrane systematic review reported that exercise-based cardiac rehabilitation (CR) compared to no exercise control shows improvement in HRQoL and hospital admission among people with HF, as well as possible reduction in mortality over the longer term, and that these reductions appear to be consistent across patient and programme characteristics. Limitations noted by the authors of this previous Cochrane Review include the following: (1) most trials were undertaken in patients with HF with reduced (< 45%) ejection fraction (HFrEF), and women, older people, and those with preserved (≥ 45%) ejection fraction HF (HFpEF) were under-represented; and (2) most trials were undertaken in the hospital/centre-based setting. OBJECTIVES: To determine the effects of exercise-based cardiac rehabilitation on mortality, hospital admission, and health-related quality of life of people with heart failure. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and three other databases on 29 January 2018. We also checked the bibliographies of systematic reviews and two trial registers. SELECTION CRITERIA: We included randomised controlled trials that compared exercise-based CR interventions with six months' or longer follow-up versus a no exercise control that could include usual medical care. The study population comprised adults (> 18 years) with evidence of HF - either HFrEF or HFpEF. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all identified references and rejected those that were clearly ineligible for inclusion in the review. We obtained full papers of potentially relevant trials. Two review authors independently extracted data from the included trials, assessed their risk of bias, and performed GRADE analyses. MAIN RESULTS: We included 44 trials (5783 participants with HF) with a median of six months' follow-up. For this latest update, we identified 11 new trials (N = 1040), in addition to the previously identified 33 trials. Although the evidence base includes predominantly patients with HFrEF with New York Heart Association classes II and III receiving centre-based exercise-based CR programmes, a growing body of studies include patients with HFpEF and are undertaken in a home-based setting. All included studies included a no formal exercise training intervention comparator. However, a wide range of comparators were seen across studies that included active intervention (i.e. education, psychological intervention) or usual medical care alone. The overall risk of bias of included trials was low or unclear, and we downgraded results using the GRADE tool for all but one outcome.Cardiac rehabilitation may make little or no difference in all-cause mortality over the short term (≤ one year of follow-up) (27 trials, 28 comparisons (2596 participants): intervention 67/1302 (5.1%) vs control 75/1294 (5.8%); risk ratio (RR) 0.89, 95% confidence interval (CI) 0.66 to 1.21; low-quality GRADE evidence) but may improve all-cause mortality in the long term (> 12 months follow up) (6 trials/comparisons (2845 participants): intervention 244/1418 (17.2%) vs control 280/1427 (19.6%) events): RR 0.88, 95% CI 0.75 to 1.02; high-quality evidence). Researchers provided no data on deaths due to HF. CR probably reduces overall hospital admissions in the short term (up to one year of follow-up) (21 trials, 21 comparisons (2182 participants): (intervention 180/1093 (16.5%) vs control 258/1089 (23.7%); RR 0.70, 95% CI 0.60 to 0.83; moderate-quality evidence, number needed to treat: 14) and may reduce HF-specific hospitalisation (14 trials, 15 comparisons (1114 participants): (intervention 40/562 (7.1%) vs control 61/552 (11.1%) RR 0.59, 95% CI 0.42 to 0.84; low-quality evidence, number needed to treat: 25). After CR, a clinically important improvement in short-term disease-specific health-related quality of life may be evident (Minnesota Living With Heart Failure questionnaire - 17 trials, 18 comparisons (1995 participants): mean difference (MD) -7.11 points, 95% CI -10.49 to -3.73; low-quality evidence). Pooling across all studies, regardless of the HRQoL measure used, shows there may be clinically important improvement with exercise (26 trials, 29 comparisons (3833 participants); standardised mean difference (SMD) -0.60, 95% CI -0.82 to -0.39; I² = 87%; Chi² = 215.03; low-quality evidence). ExCR effects appeared to be consistent different models of ExCR delivery: centre vs. home-based, exercise dose, exercise only vs. comprehensive programmes, and aerobic training alone vs aerobic plus resistance programmes. AUTHORS' CONCLUSIONS: This updated Cochrane Review provides additional randomised evidence (11 trials) to support the conclusions of the previous version (2014) of this Cochane Review. Compared to no exercise control, CR appears to have no impact on mortality in the short term (< 12 months' follow-up). Low- to moderate-quality evidence shows that CR probably reduces the risk of all-cause hospital admissions and may reduce HF-specific hospital admissions in the short term (up to 12 months). CR may confer a clinically important improvement in health-related quality of life, although we remain uncertain about this because the evidence is of low quality. Future ExCR trials need to continue to consider the recruitment of traditionally less represented HF patient groups including older, female, and HFpEF patients, and alternative CR delivery settings including home- and using technology-based programmes.


Subject(s)
Cardiac Rehabilitation/methods , Exercise Therapy , Heart Failure/rehabilitation , Adult , Aged , Cardiac Rehabilitation/mortality , Cause of Death , Chronic Disease , Exercise Therapy/mortality , Exercise Tolerance , Female , Health Status , Heart Failure/mortality , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Quality of Life , Randomized Controlled Trials as Topic , Stroke Volume , Young Adult
5.
Eur Heart J Suppl ; 21(Suppl M): M25-M31, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31908612

ABSTRACT

Congestion, renal function, and electrolyte imbalance (particularly potassium) are common problems in the management of the complex multi-morbid patient with heart failure (HF). Poor control of these fundamental clinical features is associated with adverse outcomes. Close monitoring of serum potassium and renal function is recommended by most current guidelines during the management of an episode of acute decompensated HF, yet the recommendations remain poorly implemented. Physicians are advised to treat a state of euvolaemia after an admission with decompensated HF and residual congestion is a marker of worse outcome, yet control of congestion is poorly assessed and managed in real-world practice. This document reflects the key points discussed by a panel of experts during a Heart Failure Association meeting on physiological monitoring of the complex multi-morbid HF patient, and here, we present to aspects related to renal function, electrolyte, and congestion monitoring.

6.
Eur Heart J Suppl ; 21(Suppl M): M50-M53, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31908617

ABSTRACT

Several devices have been developed for heart failure (HF) treatment and monitoring. Among device-based monitoring tools, CardioMEMS™ has received growing research attention. This document reflects the key points of an ESC consensus meeting on implantable devices for monitoring in HF, with a particular focus on CardioMEMS™.

7.
Card Fail Rev ; 9: e07, 2023.
Article in English | MEDLINE | ID: mdl-37427008

ABSTRACT

Background: This study aims to evaluate the cardiopulmonary effects of sacubitril/valsartan therapy in patients with heart failure with reduced ejection fraction (HFrEF), investigating a possible correlation with the degree of myocardial fibrosis, as assessed by cardiac magnetic resonance. Methods: A total of 134 outpatients with HFrEF were enrolled. Results: After a mean follow-up of 13.3 ± 6.6 months, an improvement in ejection fraction and a reduction in E/A ratio, inferior vena cava size and N-terminal pro-B-type natriuretic peptide levels were observed. At follow-up, we observed an increase in VO2 peak of 16% (p<0.0001) and in O2 pulse of 13% (p=0.0002) as well as an improvement in ventilatory response associated with a 7% reduction in the VE/VCO2 slope (p=0.0001). An 8% increase in the ΔVO2/Δ work ratio and an 18% increase in exercise tolerance were also observed. Multivariate logistic regression analysis showed that the main predictors of events during follow-up were VE/VCO2 slope >34 (OR 3.98; 95% CI [1.59-10.54]; p=0.0028); ventilatory oscillatory pattern (OR 4.65; 95% CI [1.55-16.13]; p=0.0052); and haemoglobin level (OR 0.35; 95% CI [0.21-0.55]; p<0.0001). In patients who had cardiac magnetic resonance, when delayed enhancement >4.6% was detected, a lower response after sacubitril/valsartan therapy was observed as expressed by improvement in ΔVO2 peak, O2 pulse, LVEF and N-terminal pro-B-type natriuretic peptide. No significant differences were observed in ΔVO2/Δ work and VE/VCO2 slope. Conclusion:Sacubitril/valsartan improves cardiopulmonary functional capacity in HFrEF patients. The presence of myocardial fibrosis on cardiac magnetic resonance is a predictor of response to therapy.

8.
Eur J Heart Fail ; 25(4): 457-468, 2023 04.
Article in English | MEDLINE | ID: mdl-36847113

ABSTRACT

This clinical consensus statement reviews the use of inotropic support in patients with advanced heart failure. The current guidelines only support use of inotropes in the setting of acute decompensated heart failure with evidence of organ malperfusion or shock. However, inotropic support may be reasonable in other patients with advanced heart failure without acute severe decompensation. The clinical evidence supporting use of inotropes in these situations is reviewed. Particularly, patients with persistent congestion, systemic hypoperfusion, or advanced heart failure with need for palliation, and specific situations relevant to implantation of left ventricular assist devices or heart transplantation are discussed. Traditional and novel drugs with inotropic effects are discussed and use of guideline-directed therapy during inotropic support is reviewed. Finally, home inotropic therapy is described, and palliative care and end-of-life aspects are reviewed in relation to management of ongoing inotropic support (including guidance for maintenance and weaning of chronic inotropic therapy support).


Subject(s)
Cardiology , Cardiovascular Agents , Heart Failure , Heart Transplantation , Heart-Assist Devices , Humans , Heart Failure/drug therapy , Cardiotonic Agents/therapeutic use , Cardiovascular Agents/therapeutic use
9.
Card Fail Rev ; 8: e17, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35601008

ABSTRACT

The aging population, higher burden of predisposing conditions and comorbidities along with improvements in therapy all contribute to the growing prevalence of heart failure (HF). Although the majority of trials have not demonstrated age-dependent heterogeneity in the efficacy or safety of medical treatment for HF, the latest trials demonstrate that older participants are less likely to receive established drug therapies for HF with reduced ejection fraction. There remains reluctance in real-world clinical practice to prescribe and up-titrate these medications in older people, possibly because of (mis)understanding about lower tolerance and greater propensity for developing adverse drug reactions. This is compounded by difficulties in the management of multiple medications, patient preferences and other non-medical considerations. Future research should provide a more granular analysis on how to approach medical and device therapies in elderly patients, with consideration of biological differences, difficulties in care delivery and issues relevant to patients' values and perspectives. A variety of approaches are needed, with the central principle being to 'add years to life - and life to years'. These include broader representation of elderly HF patients in clinical trials, improved education of healthcare professionals, wider provision of specialised centres for multidisciplinary HF management and stronger implementation of HF medical treatment in vulnerable patient groups.

10.
Pol Arch Intern Med ; 131(12)2021 12 22.
Article in English | MEDLINE | ID: mdl-34775741

ABSTRACT

Two main manifestations of wasting disorders in chronic disease are cachexia and sarcopenia. Due to shared pathological features, including impairments in systemic inflammatory responses, neurohormonal activity, and metabolic systems, the 2 disorders can present with similar symptoms (tissue depletion, dyspnea, anorexia, asthenia, fatigue, and impaired physical performance). Wasting disorders are associated with reduced quality of life and increased mortality. Cachexia is characterized by systemic tissue depletion with weight loss, and sarcopenia, by skeletal muscle loss accompanied by diminished muscular strength and physical performance. Wasting syndromes can be identified based on clinical criteria as well as with the use of multiple imaging and diagnostic techniques. Additionally, blood biomarkers can be used for diagnosing wasting disorders. In the past decade, intensive research has focused on new therapeutic strategies within a multimodal approach, which embraces nutritional support, physical activity, and targeted pharmacological therapy. Despite some initial promising therapeutic results for selected novel agents, guideline-recommended pharmacotherapy is not yet available for cachexia or sarcopenia. More research is needed to better understand these wasting disorders and learn how to treat them.


Subject(s)
Cachexia , Sarcopenia , Cachexia/diagnosis , Cachexia/etiology , Cachexia/therapy , Chronic Disease , Humans , Muscle, Skeletal/pathology , Quality of Life , Sarcopenia/complications , Sarcopenia/diagnosis
11.
Cochrane Database Syst Rev ; (4): CD003331, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20393935

ABSTRACT

BACKGROUND: From previous systematic reviews and meta-analyses there is consensus about the positive effect of exercise training on exercise capacity; however, the effects on health-related quality of life, mortality and hospital admissions in heart failure remain uncertain. OBJECTIVES: To update the previous systematic review which determined the effectiveness of exercise-based interventions on the mortality, hospitalisation admissions, morbidity and health-related quality of life for patients with systolic heart failure. SEARCH STRATEGY: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2007, Issue 4). To update searches from the previous review, MEDLINE, EMBASE, CINAHL, and PsycINFO were searched (2001 to January 2008). ISI Proceedings and bibliographies of identified reviews were checked. SELECTION CRITERIA: Randomised controlled trials of exercise-based interventions with six months follow up or longer compared to usual medical care or placebo. The study population comprised adults of all ages (> 18 years) with evidence of chronic systolic heart failure. DATA COLLECTION AND ANALYSIS: All identified references were independently screened by two review authors and those that were clearly ineligible were rejected. Full papers of potentially relevant trials were obtained. Data were independantly extracted from the included trials and their risk of bias assessed by a single review author and checked by a second. MAIN RESULTS: Nineteen trials (3647 participants) met the inclusion criteria. One large trial recuited 2331 of the participants. There was no significant difference in pooled mortality between groups in the 13 trials with < 1 year follow up. There was evidence of a non-significant trend toward a reduction in pooled mortality with exercise in the four trials with > 1 year follow up. A reduction in the hospitalisation rate was demonstrated with exercise training programmes. Hospitalisations due to systolic heart failure were reduced with exercise and there was a significant improvement in health-related quality of life (HRQoL). The effect of cardiac exercise training on total mortality and HRQoL were independent of the degree of left ventricular dysfunction, type of cardiac rehabilitation, dose of exercise intervention, length of follow up, trial quality, and trial publication date. AUTHORS' CONCLUSIONS: The previous version of this review showed that exercise training improved exercise capacity in the short term in patients with mild to moderate heart failure when compared to usual care. This updated review provides evidence that in a similar population of patients, exercise does not increase the risk of all-cause mortality and may reduce heart failure-related hospital admissions. Exercise training may offer important improvements in patients' health-related quality of life.


Subject(s)
Exercise Therapy , Heart Failure/rehabilitation , Adult , Aged , Chronic Disease , Exercise Tolerance , Health Status , Heart Failure/mortality , Humans , Middle Aged , Quality of Life , Randomized Controlled Trials as Topic , Young Adult
12.
Eur J Prev Cardiol ; 27(2_suppl): 72-75, 2020 12.
Article in English | MEDLINE | ID: mdl-33238739

ABSTRACT

The Metabolic Exercise combined with Cardiac and Kidney Indexes [MECKI) score is a validated prognostic score for heart failure with reduced ejection fraction which combines commonly available clinical and metabolic parameters with two cardiopulmonary exercise test derived prognostic measurements. It has been validated to predict prognosis and to aid clinical decision making and it has been shown to be superior in predicting mortality compared with other commonly used prognostic scores for heart failure. In the future it would be valuable to establish whether the score holds true also in other settings, and in particular in under-represented groups - the elderly, women, and people of different ethnic backgrounds - and in other heart failure syndromes. In future it may be extended to assess its value in the presence of a range of co-morbidities such as chronic obstructive pulmonary disease, pulmonary hypertension and frailty and cachexia as well as in other conditions such as hypertrophic cardiomyopathy, amyloid, asymptomatic left ventricular dysfunction and hypertension. It may also be a candidate end-point for adaptive trials designed to prove an improvement in the MECKI score as an approvable interim end-point whilst larger mortality and morbidity trials are still underway.


Subject(s)
Cardiorespiratory Fitness , Decision Support Techniques , Exercise Tolerance , Heart Failure/diagnosis , Biomarkers/blood , Diffusion of Innovation , Echocardiography/trends , Exercise Test/trends , Forecasting , Heart Disease Risk Factors , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Oxygen Consumption , Predictive Value of Tests , Prognosis , Reproducibility of Results , Risk Assessment
13.
ESC Heart Fail ; 7(5): 2922-2932, 2020 10.
Article in English | MEDLINE | ID: mdl-32700809

ABSTRACT

AIMS: Cardiac contractility modulation, also referred to as CCM™, has emerged as a promising device treatment for heart failure (HF) in patients not indicated for cardiac resynchronization therapy. We performed a comprehensive individual patient data meta-analysis of all non-confounded prospective randomized controlled trials of CCM vs. control that have measured functional capacity and/or quality of life questionnaires in patients with HF. METHODS AND RESULTS: The Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE were searched in January 2020 to identify eligible randomized controlled trials. We also asked the sole manufacturer of the device for their list of known trials. Primary outcomes of interest were peak oxygen consumption (peak VO2 ), 6 min walk test distance, and quality of life measured by Minnesota Living with Heart Failure Questionnaire (MLWHFQ), and all data were received as individual patient and individual time point data-points. Mean differences and 95% confidence intervals (CIs) were calculated for continuous data using a fixed-effects model. Five trials were identified, four randomized studies enrolling 801 participants for all endpoints of interest, and for peak VO2 alone (n = 60), there was an additional single arm non-randomized trial (FIX-HF-5C2) with a prospective comparison of its 24 week peak VO2 data compared with the control group of the FIX-HF-5C control patients. Pooled analysis showed that, compared with control, CCM significantly improved peak VO2 (mean difference +0.93, 95% CI 0.56 to 1.30 mL/kg/min, P < 0.00001), 6 min walk test distance (mean difference +17.97, 95% CI 5.48 to 30.46 m, P = 0.005), and quality of life measured by MLWHFQ (mean difference -7.85, 95% CI -10.76 to -4.94, P < 0.00001). As a sensitivity analysis, we excluded the FIX-HF-5C2 trial (only relevant for peak VO2 ), and the result was similar, mean difference +0.65, 95% CI 0.21 to 1.08 mL/kg/min, P = 0.004. CONCLUSIONS: This comprehensive meta-analysis of individual patient data from all known randomized trials has shown that CCM provides statistically significant and clinically meaningful benefits in measures of functional capacity and HF-related quality of life.


Subject(s)
Heart Failure , Quality of Life , Heart Failure/therapy , Humans , Myocardial Contraction , Prospective Studies , Randomized Controlled Trials as Topic , Treatment Outcome
14.
Card Fail Rev ; 5(1): 62, 2019 02.
Article in English | MEDLINE | ID: mdl-30847248

ABSTRACT

[This corrects the article DOI: 10.15420/cfr.2018.33.1.].

15.
Card Fail Rev ; 1(1): 11-15, 2015 Apr.
Article in English | MEDLINE | ID: mdl-28785425

ABSTRACT

Heart failure is defined as a clinical syndrome and is known to present with a number of different pathophysiological patterns. There is a remarkable degree of variation in measures of left ventricular systolic emptying and this has been used to categorise heart failure into two separate types: low ejection fraction (EF) heart failure or HF-REF and high EF heart failure or HF-PEF. Here we review the pathophysiology, epidemiology and management of HF-PEF and argue that sharp separation of heart failure into two forms is misguided and illogical, and the present scarcity of clinical trial evidence for effective treatment for HF-PEF is a problem of our own making; we should never have excluded patients from major trials on the basis of EF in the first place. Whilst as many heart failure patients have preserved EFs as reduced we have dramatically under-represented HF-PEF patients in trials. Only four trials have been performed in HF-PEF specifically, and another two trials that recruited both HF-PEF and HF-REF can be considered. When we consider the similarity in outcomes and neurohormonal activation between HF-REF and HF-REF, the vast corpus of trial data that we have to attest to the efficacy of various treatment (angiotensin-converting-enzyme [ACE] inhibitors, angiotensin receptor blockers [ARBs], beta-blockers and aldosterone antagonists) in HF-REF, and the much more limited number of trials of similar agents showing near statistically significant benefits in HF-PEF the time has come rethink our management of HF-PEF, and in particular our selection of patients for trials.

17.
Article in English | MEDLINE | ID: mdl-11714432

ABSTRACT

Chronic heart failure (CHF) is a common condition with a poor prognosis. It is associated with poor exercise tolerance and debilitating symptoms. These symptoms appear to be associated with pathophysiological changes that occur systemically in the patient with CHF. Exercise training in carefully selected patients has been shown to be safe and to improve exercise capacity. Many of the pathophysiological abnormalities of CHF are improved by training. Some studies have suggested a possible improvement in morbidity and mortality with training. This review analyzes the controlled clinical trials of exercise training in CHF published to date.

18.
Card Fail Rev ; 5(1): 4, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847237
19.
Card Fail Rev ; 5(3): 128-129, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31768267
20.
Card Fail Rev ; 5(2): 68-69, 2019 May.
Article in English | MEDLINE | ID: mdl-31179013
SELECTION OF CITATIONS
SEARCH DETAIL