Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37995687

ABSTRACT

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Subject(s)
Endogenous Retroviruses , Endogenous Retroviruses/genetics , RNA, Nuclear , Epigenesis, Genetic , Heterochromatin , Gene Expression
2.
Cell ; 149(3): 708-21, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22541439

ABSTRACT

Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Humans , In Vitro Techniques , Interneurons/metabolism , Learning , Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic , NAV1.1 Voltage-Gated Sodium Channel , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Sodium Channels/metabolism , Synapses
3.
Nature ; 595(7868): 565-571, 2021 07.
Article in English | MEDLINE | ID: mdl-34153974

ABSTRACT

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Subject(s)
Astrocytes/pathology , Brain/pathology , COVID-19/diagnosis , COVID-19/pathology , Choroid Plexus/pathology , Microglia/pathology , Neurons/pathology , Aged , Aged, 80 and over , Brain/metabolism , Brain/physiopathology , Brain/virology , COVID-19/genetics , COVID-19/physiopathology , Cell Nucleus/genetics , Choroid Plexus/metabolism , Choroid Plexus/physiopathology , Choroid Plexus/virology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Single-Cell Analysis , Transcriptome , Virus Replication
4.
J Neurosci ; 42(8): 1587-1603, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34987109

ABSTRACT

Astrocytes are critical for the development and function of synapses. There are notable species differences between human astrocytes and commonly used animal models. Yet, it is unclear whether astrocytic genes involved in synaptic function are stable or exhibit dynamic changes associated with disease states and age in humans, which is a barrier in understanding human astrocyte biology and its potential involvement in neurologic diseases. To better understand the properties of human astrocytes, we acutely purified astrocytes from the cerebral cortices of over 40 humans across various ages, sexes, and disease states. We performed RNA sequencing to generate transcriptomic profiles of these astrocytes and identified genes associated with these biological variables. We found that human astrocytes in tumor-surrounding regions downregulate genes involved in synaptic function and sensing of signals in the microenvironment, suggesting involvement of peritumor astrocytes in tumor-associated neural circuit dysfunction. In aging, we also found downregulation of synaptic regulators and upregulation of markers of cytokine signaling, while in maturation we identified changes in ionic transport with implications for calcium signaling. In addition, we identified subtle sexual dimorphism in human cortical astrocytes, which has implications for observed sex differences across many neurologic disorders. Overall, genes involved in synaptic function exhibit dynamic changes in the peritumor microenvironment and aging. These data provide powerful new insights into human astrocyte biology in several biologically relevant states that will aid in generating novel testable hypotheses about homeostatic and reactive astrocytes in humans.SIGNIFICANCE STATEMENT Astrocytes are an abundant class of cells playing integral roles at synapses. Astrocyte dysfunction is implicated in a variety of human neurologic diseases. Yet our knowledge of astrocytes is largely based on mouse studies. Direct knowledge of human astrocyte biology remains limited. Here, we present transcriptomic profiles of human cortical astrocytes, and we identified molecular differences associated with age, sex, and disease state. We found that peritumor and aging astrocytes downregulate genes involved in astrocyte-synapse interactions. These data provide necessary insight into human astrocyte biology that will improve our understanding of human disease.


Subject(s)
Astrocytes , Transcriptome , Aging/pathology , Animals , Astrocytes/physiology , Female , Humans , Male , Mice , Synapses/physiology , Tumor Microenvironment
5.
Nature ; 612(7939): 218-220, 2022 12.
Article in English | MEDLINE | ID: mdl-36450951
7.
Cereb Cortex ; 28(11): 3797-3815, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29028947

ABSTRACT

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs. We provide evidence that DLX2 directly drives Gad1, Gad2, and Vgat expression, and show that mutants had reduced mIPSC amplitude. In addition, the mutants formed fewer GABAergic synapses on excitatory neurons and had reduced mIPSC frequency. Furthermore, Dlx1/2 CKO had hypoplastic dendrites, fewer excitatory synapses, and reduced excitatory input. We provide evidence that some of these phenotypes were due to reduced expression of GRIN2B (a subunit of the NMDA receptor), a high confidence Autism gene. Thus, Dlx1&2 coordinate key components of CIN postnatal development by promoting their excitability, inhibitory output, and survival.


Subject(s)
Cerebral Cortex/growth & development , GABAergic Neurons/physiology , Homeodomain Proteins/physiology , Interneurons/physiology , Synapses/physiology , Transcription Factors/physiology , gamma-Aminobutyric Acid/biosynthesis , Animals , Cerebral Cortex/cytology , Female , GABAergic Neurons/cytology , Gene Expression Regulation, Developmental , Glutamate Decarboxylase/metabolism , Homeodomain Proteins/genetics , Interneurons/cytology , Male , Mice, Knockout , Miniature Postsynaptic Potentials , Transcription Factors/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
8.
J Neurosci ; 37(36): 8816-8829, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28821666

ABSTRACT

GABA is the key inhibitory neurotransmitter in the cortex but regulation of its synthesis during forebrain development is poorly understood. In the telencephalon, members of the distal-less (Dlx) homeobox gene family are expressed in, and regulate the development of, the basal ganglia primodia from which many GABAergic neurons originate and migrate to other forebrain regions. The Dlx1/Dlx2 double knock-out mice die at birth with abnormal cortical development, including loss of tangential migration of GABAergic inhibitory interneurons to the neocortex (Anderson et al., 1997a). We have discovered that specific promoter regulatory elements of glutamic acid decarboxylase isoforms (Gad1 and Gad2), which regulate GABA synthesis from the excitatory neurotransmitter glutamate, are direct transcriptional targets of both DLX1 and DLX2 homeoproteins in vivo Further gain- and loss-of-function studies in vitro and in vivo demonstrated that both DLX1 and DLX2 are necessary and sufficient for Gad gene expression. DLX1 and/or DLX2 activated the transcription of both Gad genes, and defects in Dlx function disrupted the differentiation of GABAergic interneurons with global reduction in GABA levels in the forebrains of the Dlx1/Dlx2 double knock-out mouse in vivo Identification of Gad genes as direct Dlx transcriptional targets is significant; it extends our understanding of Dlx gene function in the developing forebrain beyond the regulation of tangential interneuron migration to the differentiation of GABAergic interneurons arising from the basal telencephalon, and may help to unravel the pathogenesis of several developmental brain disorders.SIGNIFICANCE STATEMENT GABA is the major inhibitory neurotransmitter in the brain. We show that Dlx1/Dlx2 homeobox genes regulate GABA synthesis during forebrain development through direct activation of glutamic acid decarboxylase enzyme isoforms that convert glutamate to GABA. This discovery helps explain how Dlx mutations result in abnormal forebrain development, due to defective differentiation, in addition to the loss of tangential migration of GABAergic inhibitory interneurons to the neocortex. Reduced numbers or function of cortical GABAergic neurons may lead to hyperactivity states such as seizures (Cobos et al., 2005) or contribute to the pathogenesis of some autism spectrum disorders. GABAergic dysfunction in the basal ganglia could disrupt the learning and development of complex motor and cognitive behaviors (Rubenstein and Merzenich, 2003).


Subject(s)
Basal Forebrain/physiology , Cell Differentiation/physiology , GABAergic Neurons/physiology , Glutamate Decarboxylase/metabolism , Homeodomain Proteins/metabolism , Interneurons/physiology , Transcription Factors/metabolism , Animals , Basal Forebrain/cytology , Cell Movement/physiology , Cells, Cultured , Female , GABAergic Neurons/cytology , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic/physiology , Interneurons/cytology , Male , Mice , Mice, Knockout , gamma-Aminobutyric Acid/metabolism
9.
Cereb Cortex ; 25(1): 213-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-23960210

ABSTRACT

The von Economo neurons (VENs) are large bipolar Layer V projection neurons found chiefly in the anterior cingulate and frontoinsular cortices. Although VENs have been linked to prevalent illnesses such as frontotemporal dementia, autism, and schizophrenia, little is known about VEN identity, including their major projection targets. Here, we undertook a developmental transcription factor expression study, focusing on markers associated with specific classes of Layer V projection neurons. Using mRNA in situ hybridization, we found that VENs prominently express FEZF2 and CTIP2, transcription factors that regulate the fate and differentiation of subcerebral projection neurons, in humans aged 3 months to 65 years. In contrast, few VENs expressed markers associated with callosal or corticothalamic projections. These findings suggest that VENs may represent a specialized Layer V projection neuron for linking cortical autonomic control sites to brainstem or spinal cord regions.


Subject(s)
Gyrus Cinguli/metabolism , Neurons/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Child , Child, Preschool , Forkhead Transcription Factors/metabolism , Humans , Infant , Infant, Newborn , LIM Domain Proteins/metabolism , Matrix Attachment Region Binding Proteins/metabolism , SOXD Transcription Factors/metabolism , T-Box Domain Proteins/metabolism
10.
Acta Neuropathol Commun ; 12(1): 139, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39217398

ABSTRACT

CSF1R-related disorder (CSF1R-RD) is a neurodegenerative condition that predominantly affects white matter due to genetic alterations in the CSF1R gene, which is expressed by microglia. We studied an elderly man with a hereditary, progressive dementing disorder of unclear etiology. Standard genetic testing for leukodystrophy and other neurodegenerative conditions was negative. Brain autopsy revealed classic features of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), including confluent white matter degeneration with axonal spheroids and pigmented glial cells in the affected white matter, consistent with CSF1R-RD. Subsequent long-read sequencing identified a novel deletion in CSF1R that was not detectable with short-read exome sequencing. To gain insight into potential mechanisms underlying white matter degeneration in CSF1R-RD, we studied multiple brain regions exhibiting varying degrees of white matter pathology. We found decreased CSF1R transcript and protein across brain regions, including intact white matter. Single nuclear RNA sequencing (snRNAseq) identified two disease-associated microglial cell states: lipid-laden microglia (expressing GPNMB, ATG7, LGALS1, LGALS3) and inflammatory microglia (expressing IL2RA, ATP2C1, FCGBP, VSIR, SESN3), along with a small population of CD44+ peripheral monocyte-derived macrophages exhibiting migratory and phagocytic signatures. GPNMB+ lipid-laden microglia with ameboid morphology represented the end-stage disease microglia state. Disease-associated oligodendrocytes exhibited cell stress signatures and dysregulated apoptosis-related genes. Disease-associated oligodendrocyte precursor cells (OPCs) displayed a failure in their differentiation into mature myelin-forming oligodendrocytes, as evidenced by upregulated LRP1, PDGFRA, SOX5, NFIA, and downregulated NKX2-2, NKX6.2, SOX4, SOX8, TCF7L2, YY1, ZNF488. Overall, our findings highlight microglia-oligodendroglia crosstalk in demyelination, with CSF1R dysfunction promoting phagocytic and inflammatory microglia states, an arrest in OPC differentiation, and oligodendrocyte depletion.


Subject(s)
Neuroglia , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Male , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Neuroglia/pathology , Neuroglia/metabolism , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Leukoencephalopathies/metabolism , Aged , Microglia/pathology , Microglia/metabolism , Gene Expression Profiling , Transcriptome , White Matter/pathology , White Matter/metabolism , Brain/pathology , Brain/metabolism , Receptor, Macrophage Colony-Stimulating Factor
11.
Nat Aging ; 4(7): 984-997, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38907103

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by a progressive loss of motor function linked to degenerating extratelencephalic neurons/Betz cells (ETNs). The reasons why these neurons are selectively affected remain unclear. Here, to understand the unique molecular properties that may sensitize ETNs to ALS, we performed RNA sequencing of 79,169 single nuclei from cortices of patients and controls. In both patients and unaffected individuals, we found significantly higher expression of ALS risk genes in THY1+ ETNs, regardless of diagnosis. In patients, this was accompanied by the induction of genes involved in protein homeostasis and stress responses that were significantly induced in a wide collection of ETNs. Examination of oligodendroglial and microglial nuclei revealed patient-specific downregulation of myelinating genes in oligodendrocytes and upregulation of an endolysosomal reactive state in microglia. Our findings suggest that selective vulnerability of extratelencephalic neurons is partly connected to their intrinsic molecular properties sensitizing them to genetics and mechanisms of degeneration.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurons , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Risk Factors , Microglia/metabolism , Microglia/pathology , Cell Nucleus/metabolism , Cell Nucleus/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Male , Single-Cell Analysis , Sequence Analysis, RNA , Female , Middle Aged , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Degeneration/metabolism
12.
Acta Neuropathol Commun ; 12(1): 7, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212848

ABSTRACT

Mitosis is a critical criterion for meningioma grading. However, pathologists' assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists' mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm's ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/pathology , Mitotic Index/methods , Artificial Intelligence , Mitosis , Meningeal Neoplasms/pathology
14.
Cereb Cortex ; 22(3): 493-508, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21666125

ABSTRACT

Inhibition modulates receptive field properties and integrative responses of neurons in cortical circuits. The contribution of specific interneuron classes to cortical circuits and emergent responses is unknown. Here, we examined neuronal responses in primary visual cortex (V1) of adult Dlx1(-/-) mice, which have a selective reduction in cortical dendrite-targeting interneurons (DTIs) that express calretinin, neuropeptide Y, and somatostatin. The V1 neurons examined in Dlx1(-/-) mice have reduced orientation selectivity and altered firing rates, with elevated late responses, suggesting that local inhibition at dendrites has a specific role in modulating neuronal computations. We did not detect overt changes in the physiological properties of thalamic relay neurons and features of thalamocortical projections, such as retinotopic maps and eye-specific inputs, in the mutant mice, suggesting that the defects are cortical in origin. These experimental results are well explained by a computational model that integrates broad tuning from dendrite-targeting and narrower tuning from soma-targeting interneuron subclasses. Our findings suggest a key role for DTIs in the fine-tuning of stimulus-specific cortical responses.


Subject(s)
Interneurons/physiology , Neural Inhibition/physiology , Transcription Factors/deficiency , Visual Cortex/physiology , Visual Perception/physiology , Action Potentials/genetics , Action Potentials/physiology , Animals , Cell Communication/genetics , Cell Communication/physiology , Down-Regulation/genetics , Homeodomain Proteins/genetics , Interneurons/classification , Interneurons/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Neural Inhibition/genetics , Organ Culture Techniques , Sequence Deletion , Transcription Factors/genetics , Visual Cortex/pathology , Visual Perception/genetics
15.
Science ; 381(6662): 1112-1119, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37676945

ABSTRACT

The cerebellum contains most of the neurons in the human brain and exhibits distinctive modes of development and aging. In this work, by developing our single-cell three-dimensional (3D) genome assay-diploid chromosome conformation capture, or Dip-C-into population-scale (Pop-C) and virus-enriched (vDip-C) modes, we resolved the first 3D genome structures of single cerebellar cells, created life-spanning 3D genome atlases for both humans and mice, and jointly measured transcriptome and chromatin accessibility during development. We found that although the transcriptome and chromatin accessibility of cerebellar granule neurons mature in early postnatal life, 3D genome architecture gradually remodels throughout life, establishing ultra-long-range intrachromosomal contacts and specific interchromosomal contacts that are rarely seen in neurons. These results reveal unexpected evolutionarily conserved molecular processes that underlie distinctive features of neural development and aging across the mammalian life span.


Subject(s)
Cellular Senescence , Cerebellum , Chromatin Assembly and Disassembly , Genome , Neurons , Animals , Humans , Mice , Cerebellum/cytology , Cerebellum/growth & development , Neurons/metabolism , Imaging, Three-Dimensional , Single-Cell Analysis , Atlases as Topic
16.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36865235

ABSTRACT

The cerebellum contains most of the neurons in the human brain, and exhibits unique modes of development, malformation, and aging. For example, granule cells-the most abundant neuron type-develop unusually late and exhibit unique nuclear morphology. Here, by developing our high-resolution single-cell 3D genome assay Dip-C into population-scale (Pop-C) and virus-enriched (vDip-C) modes, we were able to resolve the first 3D genome structures of single cerebellar cells, create life-spanning 3D genome atlases for both human and mouse, and jointly measure transcriptome and chromatin accessibility during development. We found that while the transcriptome and chromatin accessibility of human granule cells exhibit a characteristic maturation pattern within the first year of postnatal life, 3D genome architecture gradually remodels throughout life into a non-neuronal state with ultra-long-range intra-chromosomal contacts and specific inter-chromosomal contacts. This 3D genome remodeling is conserved in mice, and robust to heterozygous deletion of chromatin remodeling disease-associated genes (Chd8 or Arid1b). Together these results reveal unexpected and evolutionarily-conserved molecular processes underlying the unique development and aging of the mammalian cerebellum.

17.
Front Immunol ; 13: 812924, 2022.
Article in English | MEDLINE | ID: mdl-35386709

ABSTRACT

The generation and differentiation of B lymphocytes (B cells) is a flexible process with many critical regulatory factors. Previous studies indicated that non-coding RNAs play multiple roles in the development of lymphocytes. However, little has been known about the circular RNA (circRNA) profiles and their competing endogenous RNA (ceRNA) networks in B-cell development and differentiation. Here, four B-cell subsets were purified from single-cell suspensions of mouse bone marrow. Then RNA sequencing (RNA-Seq) was used to display expression profiles of circRNAs, miRNAs and mRNAs during B-cell differentiation. 175, 203, 219 and 207 circRNAs were specifically expressed in pro-B cells, pre-B cells, immature B cells and mature B cells, respectively. The circRNA-associated ceRNA networks constructed in two sequential stages of B-cell differentiation revealed the potential mechanism of circRNAs in these processes. This study is the first to explore circRNA profiles and circRNA-miRNA-mRNA networks in different B-cell developmental stages of mouse bone marrow, which contribute to further research on their mechanism in B-cell development and differentiation.


Subject(s)
MicroRNAs , RNA, Circular , Animals , Gene Expression Profiling , Gene Regulatory Networks , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
JAMA Neurol ; 79(6): 592-603, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35435938

ABSTRACT

Importance: Characterization of early tau deposition in individuals with preclinical Alzheimer disease (AD) is critical for prevention trials that aim to select individuals at risk for AD and halt the progression of disease. Objective: To evaluate the prevalence of cortical tau positron emission tomography (PET) heterogeneity in a large cohort of clinically unimpaired older adults with elevated ß-amyloid (A+). Design, Setting, and Participants: This cross-sectional study examined prerandomized tau PET, amyloid PET, structural magnetic resonance imaging, demographic, and cognitive data from the Anti-Amyloid Treatment in Asymptomatic AD (A4) Study from April 2014 to December 2017. Follow-up analyses used observational tau PET data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Harvard Aging Brain Study (HABS), and the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center (together hereinafter referred to as Wisconsin) to evaluate consistency. Participants were clinically unimpaired at the study visit closest to the tau PET scan and had available amyloid and tau PET data (A4 Study, n = 447; ADNI, n = 433; HABS, n = 190; and Wisconsin, n = 328). No participants who met eligibility criteria were excluded. Data were analyzed from May 11, 2021, to January 25, 2022. Main Outcomes and Measures: Individuals with preclinical AD with heterogeneous cortical tau PET patterns (A+T cortical+) were identified by examining asymmetrical cortical tau signal and disproportionate cortical tau signal relative to medial temporal lobe (MTL) tau. Voxelwise tau patterns, amyloid, neurodegeneration, cognition, and demographic characteristics were examined. Results: The 447 A4 participants (A+ group, 392; and normal ß-amyloid group, 55), with a mean (SD) age of 71.8 (4.8) years, included 239 women (54%). A total of 36 individuals in the A+ group (9% of the A+ group) exhibited heterogeneous cortical tau patterns and were further categorized into 3 subtypes: asymmetrical left, precuneus dominant, and asymmetrical right. A total of 116 individuals in the A+ group (30% of the A+ group) showed elevated MTL tau (A+T MTL+). Individuals in the A+T cortical+ group were younger than those in the A+T MTL+ group (t61.867 = -2.597; P = .03). Across the A+T cortical+ and A+T MTL+ groups, increased regional tau was associated with reduced hippocampal volume and MTL thickness but not with cortical thickness. Memory scores were comparable between the A+T cortical+ and A+T MTL+ groups, whereas executive functioning scores were lower for the A+T cortical+ group than for the A+T MTL+ group. The prevalence of the A+T cortical+ group and tau patterns within the A+T cortical+ group were consistent in ADNI, HABS, and Wisconsin. Conclusions and Relevance: This study suggests that early tau deposition may follow multiple trajectories during preclinical AD and may involve several cortical regions. Staging procedures, especially those based on neuropathology, that assume a uniform trajectory across individuals are insufficient for disease monitoring with tau imaging.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins
19.
Neuron ; 110(18): 2929-2948.e8, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35882228

ABSTRACT

Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the molecular signatures that distinguish between aggregation-prone and aggregation-resistant cell states are unknown. We developed methods for the high-throughput isolation and transcriptome profiling of single somas with NFTs from the human AD brain, quantified the susceptibility of 20 neocortical subtypes for NFT formation and death, and identified both shared and cell-type-specific signatures. NFT-bearing neurons shared a marked upregulation of synaptic transmission-related genes, including a core set of 63 genes enriched for synaptic vesicle cycling. Oxidative phosphorylation and mitochondrial dysfunction were highly cell-type dependent. Apoptosis was only modestly enriched, and the susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our analysis suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction. We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-independent mechanisms of neurodegeneration.


Subject(s)
Alzheimer Disease , Neurofibrillary Tangles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Biomarkers/metabolism , Brain/metabolism , Humans , Neurofibrillary Tangles/metabolism , tau Proteins/genetics , tau Proteins/metabolism
20.
Neuron ; 54(6): 873-88, 2007 Jun 21.
Article in English | MEDLINE | ID: mdl-17582329

ABSTRACT

In the mouse telencephalon, Dlx homeobox transcription factors are essential for the tangential migration of subpallial-derived GABAergic interneurons to neocortex. However, the mechanisms underlying this process are poorly understood. Here, we demonstrate that Dlx1/2 has a central role in restraining neurite growth of subpallial-derived immature interneurons at a stage when they migrate tangentially to cortex. In Dlx1-/-;Dlx2-/- mutants, neurite length is increased and cells fail to migrate. In Dlx1-/-;Dlx2+/- mutants, while the tangential migration of immature interneurons appears normal, they develop dendritic and axonal processes with increased length and decreased branching, and have deficits in their neocortical laminar positions. Thus, Dlx1/2 is required for coordinating programs of neurite maturation and migration. In this regard, we provide genetic evidence that in immature interneurons Dlx1/2 repression of the p21-activated serine/threonine kinase PAK3, a downstream effector of the Rho family of GTPases, is critical in restraining neurite growth and promoting tangential migration.


Subject(s)
Axons/physiology , Cell Movement/physiology , Dendrites/physiology , Homeodomain Proteins/physiology , Interneurons/cytology , Interneurons/physiology , Transcription Factors/physiology , Animals , Animals, Newborn , Axons/drug effects , Cell Movement/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Dendrites/drug effects , Embryo, Mammalian , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Green Fluorescent Proteins/biosynthesis , Homeodomain Proteins/classification , In Vitro Techniques , Interneurons/drug effects , Mice , Mice, Transgenic , Microarray Analysis/methods , Pregnancy , Protein Serine-Threonine Kinases/metabolism , Pyramidal Cells/cytology , Pyramidal Cells/physiology , RNA, Small Interfering/pharmacology , Transcription Factors/classification , Transcription Factors/deficiency , Transfection/methods , p21-Activated Kinases , rho GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL