Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Bioconjug Chem ; 30(6): 1649-1657, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31136151

ABSTRACT

Endotoxin (lipooligosaccharide, LOS, and lipopolysaccharide, LPS) is the major molecular component of Gram-negative bacteria outer membrane, and very potent pro-inflammatory substance. Visualizing and tracking the distribution of the circulating endotoxin is one of the fundamental approaches to understand the molecular aspects of infection with subsequent inflammatory and immune responses, LPS also being a key player in the molecular dialogue between microbiota and host. While fluorescently labeled LPS has previously been used to track its subcellular localization and colocalization with TLR4 receptor and downstream effectors, our knowledge on lipopolysaccharide (LOS) localization and cellular activity remains almost unexplored. In this study, LOS was labeled with a novel fluorophore, Cy7N, featuring a large Stokes-shifted emission in the deep-red spectrum resulting in lower light scattering and better imaging contrast. The LOS-Cy7N chemical identity was determined by mass spectrometry, and immunoreactivity of the conjugate was evaluated. Interestingly, its application to microscopic imaging showed a faster cell internalization compared to LPS-Alexa488, despite that it is also CD14-dependent and undergoes the same endocytic pathway as LPS toward lysosomal detoxification. Our results suggest the use of the new infrared fluorophore Cy7N for cell imaging of labeled LOS by confocal fluorescence microscopy, and propose that LOS is imported in the cells by mechanisms different from those responsible for LPS uptake.


Subject(s)
Bacteria/metabolism , Carbocyanines/chemistry , Lipopolysaccharides/chemical synthesis , Microscopy/methods , Endocytosis , Fluorescent Dyes/chemistry , In Vitro Techniques , Toll-Like Receptor 4/metabolism
2.
Int J Mol Sci ; 18(11)2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29099761

ABSTRACT

The interactions between sugar-containing molecules from the bacteria cell wall and pattern recognition receptors (PRR) on the plasma membrane or cytosol of specialized host cells are the first molecular events required for the activation of higher animal's immune response and inflammation. This review focuses on the role of carbohydrates of bacterial endotoxin (lipopolysaccharide, LPS, lipooligosaccharide, LOS, and lipid A), in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. The lipid chains and the phosphorylated disaccharide core of lipid A moiety are responsible for the TLR4 agonist action of LPS, and the specific interaction between MD-2, TLR4, and lipid A are key to the formation of the activated complex (TLR4/MD-2/LPS)2, which starts intracellular signalling leading to nuclear factors activation and to production of inflammatory cytokines. Subtle chemical variations in the lipid and sugar parts of lipid A cause dramatic changes in endotoxin activity and are also responsible for the switch from TLR4 agonism to antagonism. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-d-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively. This review focuses on the role of lipid A, but also of Kdo and Hep sugars in LPS/TLR4 signalling.


Subject(s)
Bacteria/immunology , Bacterial Infections/immunology , Lipopolysaccharides/immunology , Signal Transduction , Toll-Like Receptor 4/immunology , Animals , Bacteria/chemistry , Bacterial Infections/microbiology , Humans , Immunity, Innate , Lipopolysaccharides/analysis , Lymphocyte Antigen 96/analysis , Lymphocyte Antigen 96/immunology , Models, Molecular , Toll-Like Receptor 4/analysis
3.
Sci Rep ; 9(1): 919, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696900

ABSTRACT

New monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. The binding of the synthetic compounds to purified, functional recombinant human MD-2 was studied by four independent methods. All compounds bound to MD-2 with similar affinities and inhibited in a concentration-dependent manner the LPS-stimulated TLR4 signaling in human and murine cells, while being inactive as TLR4 agonists when provided alone. A compound of the panel was tested in vivo and was not able to inhibit the production of proinflammatory cytokines in animals. This lack of activity is probably due to strong binding to serum albumin, as suggested by cell experiments in the presence of the serum. The interesting self-assembly property in solution of this type of compounds was investigated by computational methods and microscopy, and formation of large vesicles was observed by cryo-TEM microscopy.


Subject(s)
Glycolipids/chemistry , Lymphocyte Antigen 96/chemistry , Toll-Like Receptor 4/chemistry , Animals , Binding Sites , Glycolipids/metabolism , Glycolipids/pharmacology , Humans , Lymphocyte Antigen 96/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Signal Transduction/drug effects , Structure-Activity Relationship , Toll-Like Receptor 4/antagonists & inhibitors
4.
Eur J Med Chem ; 123: 161-170, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27475107

ABSTRACT

Based on a screening process, we targeted substituted thiosemicarbazone as potential antileishmanial agents. Our objective was to identify the key structural elements contributing to the anti-parasite activity that might be used for development of effective drugs. A series of 32 compounds was synthesized and their efficacy was evaluated against the clinically relevant intracellular amastigotes of Leishmania donovani. From these, 22 compounds showed EC50 values below 10 µM with the most active derivative (compound 14) showing an EC50 of 0.8 µM with very low toxicity on two different mammalian cell lines. The most relevant structural elements required for higher activity indicate that the presence of a fused bicyclic aromatic ring such as a naphthalene bearing an alkyl or an alkoxy group substituent are prerequisites. Owing to the easy synthesis, high activity and low toxicity, the most active compounds could be considered as a lead for further development.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Leishmania donovani/drug effects , Thiosemicarbazones/pharmacology , Alkylation , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cell Line , Humans , Inhibitory Concentration 50 , Polycyclic Aromatic Hydrocarbons , Structure-Activity Relationship , Thiosemicarbazones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL