Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
EMBO J ; 39(22): e105220, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32930455

ABSTRACT

When dormant naïve T cells first become activated by antigen-presenting cells, they express the autocrine growth factor IL-2 which transforms them into rapidly dividing effector T cells. During this process, hundreds of genes undergo epigenetic reprogramming for efficient activation, and also for potential reactivation after they return to quiescence as memory T cells. However, the relative contributions of IL-2 and T cell receptor signaling to this process are unknown. Here, we show that IL-2 signaling is required to maintain open chromatin at hundreds of gene regulatory elements, many of which control subsequent stimulus-dependent alternative pathways of T cell differentiation. We demonstrate that IL-2 activates binding of AP-1 and STAT5 at sites that can subsequently bind lineage-determining transcription factors, depending upon what other external factors exist in the local T cell environment. Once established, priming can also be maintained by the stroma-derived homeostatic cytokine IL-7, and priming diminishes if Il7r is subsequently deleted in vivo. Hence, IL-2 is not just a growth factor; it lays the foundation for T cell differentiation and immunological memory.


Subject(s)
Cell Differentiation/physiology , Factor VII/metabolism , Interleukin-2/metabolism , Interleukin-7/metabolism , Animals , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Chromatin/metabolism , Cytokines/metabolism , Epigenomics , Factor VII/genetics , Gene Expression Regulation , Immunologic Memory , Interleukin-2/genetics , Interleukin-7/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , STAT5 Transcription Factor/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcription Factors
2.
Blood ; 140(17): 1875-1890, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35839448

ABSTRACT

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Epigenesis, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genes, Regulator , Chromatin
3.
EMBO J ; 35(5): 515-35, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26796577

ABSTRACT

Immunological memory is a defining feature of vertebrate physiology, allowing rapid responses to repeat infections. However, the molecular mechanisms required for its establishment and maintenance remain poorly understood. Here, we demonstrated that the first steps in the acquisition of T-cell memory occurred during the initial activation phase of naïve T cells by an antigenic stimulus. This event initiated extensive chromatin remodeling that reprogrammed immune response genes toward a stably maintained primed state, prior to terminal differentiation. Activation induced the transcription factors NFAT and AP-1 which created thousands of new DNase I-hypersensitive sites (DHSs), enabling ETS-1 and RUNX1 recruitment to previously inaccessible sites. Significantly, these DHSs remained stable long after activation ceased, were preserved following replication, and were maintained in memory-phenotype cells. We show that primed DHSs maintain regions of active chromatin in the vicinity of inducible genes and enhancers that regulate immune responses. We suggest that this priming mechanism may contribute to immunological memory in T cells by facilitating the induction of nearby inducible regulatory elements in previously activated T cells.


Subject(s)
Chromatin/metabolism , Immunologic Memory , T-Lymphocytes/metabolism , Animals , Cells, Cultured , Chemokine CCL1/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Deoxyribonuclease I/metabolism , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Interleukin-3/genetics , Jurkat Cells , Mice, Transgenic , NFATC Transcription Factors/genetics , Proto-Oncogene Protein c-ets-1/genetics , RNA, Messenger/metabolism , Spleen/immunology , T-Lymphocytes/immunology , Transcription Factor AP-1/genetics
4.
Development ; 143(23): 4324-4340, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27802171

ABSTRACT

The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals.


Subject(s)
Cell Differentiation/physiology , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/cytology , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Activating Transcription Factors/metabolism , Animals , Binding Sites/genetics , Cell Line , DNA-Binding Proteins/genetics , Gene Expression/genetics , Gene Expression Profiling , Mice , Muscle, Smooth, Vascular/metabolism , Protein Binding , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/physiology , TEA Domain Transcription Factors , Transcription Factor AP-1/antagonists & inhibitors
5.
J Immunol ; 199(8): 2652-2667, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28904128

ABSTRACT

TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation.


Subject(s)
Calcium/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Calcium Ionophores/immunology , Humans , Jurkat Cells , Lymphocyte Activation , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Phosphotransferases/metabolism , Receptor Cross-Talk , Signal Transduction , Transcription Factor AP-1/metabolism
6.
Bioessays ; 39(2)2017 02.
Article in English | MEDLINE | ID: mdl-28026028

ABSTRACT

We have identified a simple epigenetic mechanism underlying the establishment and maintenance of immunological memory in T cells. By studying the transcriptional regulation of inducible genes we found that a single cycle of activation of inducible factors is sufficient to initiate stable binding of pre-existing transcription factors to thousands of newly activated distal regulatory elements within inducible genes. These events lead to the creation of islands of active chromatin encompassing nearby enhancers, thereby supporting the accelerated activation of inducible genes, without changing steady state levels of transcription in memory T cells. These studies also highlighted the need for more sophisticated definitions of gene regulatory elements. The chromatin priming elements defined here are distinct from classical enhancers because they function by maintaining chromatin accessibility rather than directly activating transcription. We propose that these priming elements are members of a wider class of genomic elements that support correct developmentally regulated gene expression.


Subject(s)
Chromatin , Epigenesis, Genetic , Immunologic Memory , T-Lymphocytes/metabolism , Animals , Humans , T-Lymphocytes/immunology , Transcriptional Activation
7.
Blood ; 137(24): 3321-3322, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34137844
8.
Proc Natl Acad Sci U S A ; 111(42): E4513-22, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288773

ABSTRACT

Deregulated transcription factor (TF) activities are commonly observed in hematopoietic malignancies. Understanding tumorigenesis therefore requires determining the function and hierarchical role of individual TFs. To identify TFs central to lymphomagenesis, we identified lymphoma type-specific accessible chromatin by global mapping of DNaseI hypersensitive sites and analyzed enriched TF-binding motifs in these regions. Applying this unbiased approach to classical Hodgkin lymphoma (HL), a common B-cell-derived lymphoma with a complex pattern of deregulated TFs, we discovered interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating with NF-κB to activate essential characteristic features of HL. Our strategy efficiently identified a lymphoma type-specific key regulator and uncovered a tumor promoting role of IRF5.


Subject(s)
Chromatin/metabolism , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Interferon Regulatory Factors/metabolism , Transcription Factor AP-1/metabolism , Amino Acid Motifs , Animals , B-Lymphocytes/cytology , Cell Line, Tumor , Cell Lineage , Chemokines/metabolism , Chemotaxis , Cytokines/metabolism , Deoxyribonuclease I/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Inflammation , Leukocytes, Mononuclear/cytology , Lymphoma/metabolism , Lymphoma, Non-Hodgkin/metabolism , Mice , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Plasmids/metabolism , Spleen/cytology
9.
Mol Cell ; 32(1): 129-39, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18851839

ABSTRACT

Transcription of the lysozyme gene is rapidly induced by proinflammatory stimuli such as treatment with bacterial lipopolysaccharide (LPS). Here we show that this induction involves both the relief of repression mediated by the enhancer-blocking protein CTCF that binds to a negative regulatory element at -2.4 kb, and the activation of two flanking enhancer elements. The downstream enhancer has promoter activity, and LPS stimulation initiates the transient synthesis of a noncoding RNA (LINoCR) transcribed through the -2.4 kb element. Expression of LINoCR is correlated with IKKalpha recruitment, histone H3 phosphoacetylation in the transcribed region, the repositioning of a nucleosome over the CTCF binding site, and, eventually, CTCF eviction. Each of these events requires transcription elongation. Our data reveal a transcription-dependent mechanism of chromatin remodeling that switches a cis-regulatory region from a repressive to an active conformation.


Subject(s)
DNA-Binding Proteins/metabolism , Muramidase/genetics , Repressor Proteins/metabolism , Animals , Base Sequence , Binding Sites , CCCTC-Binding Factor , Cell Line , Chickens , DNA Primers/genetics , Enhancer Elements, Genetic , Histones/metabolism , Lipopolysaccharides/pharmacology , Nucleosomes/drug effects , Nucleosomes/metabolism , Phosphorylation , Promoter Regions, Genetic , RNA Interference , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Regulatory Elements, Transcriptional , Transcription, Genetic/drug effects , Up-Regulation/drug effects
10.
Yale J Biol Med ; 89(4): 591-596, 2016 12.
Article in English | MEDLINE | ID: mdl-28018147

ABSTRACT

Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription factors to sites undergoing chromatin reorganization. I will summarize studies showing that activation of kinase signaling pathways creates open chromatin regions that recruit pre-existing factors which were previously unable to bind to closed chromatin. As models I will draw upon genes activated or primed by receptor signaling in memory T cells, and genes activated by cytokine receptor mutations in acute myeloid leukemia. I also summarize a hit-and-run model of stable epigenetic reprograming in memory T cells, mediated by transient Activator Protein 1 (AP-1) binding, which enables the accelerated activation of inducible enhancers.


Subject(s)
Leukemia/metabolism , Animals , Epigenomics , Humans , Leukemia/genetics , Mutation/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcription, Genetic/genetics , Transcription, Genetic/physiology
11.
BMC Genomics ; 16: 1000, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26608661

ABSTRACT

BACKGROUND: The analysis of differential gene expression is a fundamental tool to relate gene regulation with specific biological processes. Differential binding of transcription factors (TFs) can drive differential gene expression. While DNase-seq data can provide global snapshots of TF binding, tools for detecting differential binding from pairs of DNase-seq data sets are lacking. RESULTS: In order to link expression changes with changes in TF binding we introduce the concept of differential footprinting alongside a computational tool. We demonstrate that differential footprinting is associated with differential gene expression and can be used to define cell types by their specific TF occupancy patterns. CONCLUSIONS: Our new tool, Wellington-bootstrap, will enable the detection of differential TF binding facilitating the study of gene regulatory systems.


Subject(s)
Binding Sites , Computational Biology/methods , DNA Footprinting , Deoxyribonucleases/metabolism , High-Throughput Nucleotide Sequencing , Transcription Factors/metabolism , Antigens, CD19/metabolism , B-Lymphocyte Subsets/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cluster Analysis , DNA Footprinting/methods , Gene Expression Regulation , Humans , Organ Specificity/genetics , Protein Binding
12.
Nucleic Acids Res ; 41(21): e201, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24071585

ABSTRACT

The expression of eukaryotic genes is regulated by cis-regulatory elements such as promoters and enhancers, which bind sequence-specific DNA-binding proteins. One of the great challenges in the gene regulation field is to characterise these elements. This involves the identification of transcription factor (TF) binding sites within regulatory elements that are occupied in a defined regulatory context. Digestion with DNase and the subsequent analysis of regions protected from cleavage (DNase footprinting) has for many years been used to identify specific binding sites occupied by TFs at individual cis-elements with high resolution. This methodology has recently been adapted for high-throughput sequencing (DNase-seq). In this study, we describe an imbalance in the DNA strand-specific alignment information of DNase-seq data surrounding protein-DNA interactions that allows accurate prediction of occupied TF binding sites. Our study introduces a novel algorithm, Wellington, which considers the imbalance in this strand-specific information to efficiently identify DNA footprints. This algorithm significantly enhances specificity by reducing the proportion of false positives and requires significantly fewer predictions than previously reported methods to recapitulate an equal amount of ChIP-seq data. We also provide an open-source software package, pyDNase, which implements the Wellington algorithm to interface with DNase-seq data and expedite analyses.


Subject(s)
Algorithms , DNA Footprinting/methods , DNA-Binding Proteins/metabolism , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Transcription Factors/metabolism , Binding Sites , Deoxyribonucleases , Genomics/methods , Humans , Software
13.
J Immunol ; 189(9): 4459-69, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23024272

ABSTRACT

The closely linked human IL-3 and GM-CSF genes are tightly regulated and are expressed in activated T cells and mast cells. In this study, we used transgenic mice to study the developmental regulation of this locus and to identify DNA elements required for its correct activity in vivo. Because these two genes are separated by a CTCF-dependent insulator, and the GM-CSF gene is regulated primarily by its own upstream enhancer, the main objective in this study was to identify regions of the locus required for correct IL-3 gene expression. We initially found that the previously identified proximal upstream IL-3 enhancers were insufficient to account for the in vivo activity of the IL-3 gene. However, an extended analysis of DNase I-hypersensitive sites (DHSs) spanning the entire upstream IL-3 intergenic region revealed the existence of a complex cluster of both constitutive and inducible DHSs spanning the -34- to -40-kb region. The tissue specificity of these DHSs mirrored the activity of the IL-3 gene, and included a highly inducible cyclosporin A-sensitive enhancer at -37 kb that increased IL-3 promoter activity 40-fold. Significantly, inclusion of this region enabled correct in vivo regulation of IL-3 gene expression in T cells, mast cells, and myeloid progenitor cells.


Subject(s)
Enhancer Elements, Genetic/immunology , Gene Expression Regulation, Developmental/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukin-3/biosynthesis , Interleukin-3/genetics , Animals , Cell Line , Cell Line, Tumor , Cells, Cultured , Deoxyribonuclease I/genetics , Enhancer Elements, Genetic/genetics , Genetic Loci/immunology , Humans , Jurkat Cells , Mice , Mice, Transgenic , Tissue Distribution/genetics , Tissue Distribution/immunology
14.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-37989524

ABSTRACT

Tissue-specific gene regulation during development involves the interplay between transcription factors and epigenetic regulators binding to enhancer and promoter elements. The pattern of active enhancers defines the cellular differentiation state. However, developmental gene activation involves a previous step called chromatin priming which is not fully understood. We recently developed a genome-wide functional assay that allowed us to functionally identify enhancer elements integrated in chromatin regulating five stages spanning the in vitro differentiation of embryonic stem cells to blood. We also measured global chromatin accessibility, histone modifications, and transcription factor binding. The integration of these data identified and characterised cis-regulatory elements which become activated before the onset of gene expression, some of which are primed in a signalling-dependent fashion. Deletion of such a priming element leads to a delay in the up-regulation of its associated gene in development. Our work uncovers the details of a complex network of regulatory interactions with the dynamics of early chromatin opening being at the heart of dynamic tissue-specific gene expression control.


Subject(s)
Chromatin , Regulatory Sequences, Nucleic Acid , Chromatin/genetics , Cell Differentiation/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Promoter Regions, Genetic/genetics
15.
Nat Commun ; 15(1): 1359, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355578

ABSTRACT

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Stem Cells/metabolism , Neoplastic Stem Cells/metabolism
16.
iScience ; 27(4): 109576, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38638836

ABSTRACT

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.

17.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37503022

ABSTRACT

AML is a heterogenous disease caused by different mutations. We have previously shown that each mutational sub-type develops its specific gene regulatory network (GRN) with transcription factors interacting with multiple gene modules, many of which are transcription factor genes themselves. Here we hypothesized that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We tested this hypothesis using FLT3-ITD mutated AML as a model and conducted an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict identifying crucial regulatory modules required for AML but not normal cellular growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD AML and that its removal leads to GRN collapse and cell death.

18.
Leukemia ; 37(1): 102-112, 2023 01.
Article in English | MEDLINE | ID: mdl-36333583

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by mutations in genes encoding transcriptional and epigenetic regulators together with signaling genes. It is characterized by a disturbance of differentiation and abnormal proliferation of hematopoietic progenitors. We have previously shown that each AML subtype establishes its own core gene regulatory network (GRN), consisting of transcription factors binding to their target genes and imposing a specific gene expression pattern that is required for AML maintenance. In this study, we integrate gene expression, open chromatin and ChIP data with promoter-capture Hi-C data to define a refined core GRN common to all patients with CEBPA-double mutant (CEBPAN/C) AML. These mutations disrupt the structure of a major regulator of myelopoiesis. We identify the binding sites of mutated C/EBPα proteins in primary cells, we show that C/EBPα, AP-1 factors and RUNX1 colocalize and are required for AML maintenance, and we employ single cell experiments to link important network nodes to the specific differentiation trajectory from leukemic stem to blast cells. Taken together, our study provides an important resource which predicts the specific therapeutic vulnerabilities of this AML subtype in human cells.


Subject(s)
Gene Regulatory Networks , Leukemia, Myeloid, Acute , Humans , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Mutation , Cell Differentiation/genetics , Leukemia, Myeloid, Acute/pathology
19.
Cell Rep ; 42(12): 113568, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38104314

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease caused by different mutations. Previously, we showed that each mutational subtype develops its specific gene regulatory network (GRN) with transcription factors interacting within multiple gene modules, many of which are transcription factor genes themselves. Here, we hypothesize that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We test this hypothesis using FLT3-ITD-mutated AML as a model and conduct an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict crucial regulatory modules required for AML growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD+ AML and that its removal leads to GRN collapse and cell death.


Subject(s)
Gene Regulatory Networks , Leukemia, Myeloid, Acute , Humans , Regulon , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation/genetics , RNA, Small Interfering , fms-Like Tyrosine Kinase 3/genetics
20.
Nat Commun ; 14(1): 6947, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935654

ABSTRACT

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Subject(s)
Interferon Regulatory Factors , Lymphoma , Humans , B-Lymphocytes/metabolism , DNA , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphoma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL