ABSTRACT
Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.
Subject(s)
Kynurenine , Tryptophan , Young Adult , Humans , Aged , Kynurenine/metabolism , Tryptophan/metabolism , Kynurenic Acid , NAD/metabolism , Muscle, Skeletal/physiology , Exercise/physiologyABSTRACT
BACKGROUND: Brown adipose tissue (BAT) is an important tissue for thermogenesis, making it a potential target to decrease the risks of obesity, type 2 diabetes, and cardiovascular disease, and recent studies have also identified BAT as an endocrine organ. Although BAT has been implicated to be protective in cardiovascular disease, to this point there are no studies that identify a direct role for BAT to mediate cardiac function. METHODS: To determine the role of BAT on cardiac function, we utilized a model of BAT transplantation. We then performed lipidomics and identified an increase in the lipokine 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME). We utilized a mouse model with sustained overexpression of 12,13-diHOME and investigated the role of 12,13-diHOME in a nitric oxide synthase type 1 deficient (NOS1-/-) mouse and in isolated cardiomyocytes to determine effects on function and respiration. We also investigated 12,13-diHOME in a cohort of human patients with heart disease. RESULTS: Here, we determined that transplantation of BAT (+BAT) improves cardiac function via the release of the lipokine 12,13-diHOME. Sustained overexpression of 12,13-diHOME using tissue nanotransfection negated the deleterious effects of a high-fat diet on cardiac function and remodeling, and acute injection of 12,13-diHOME increased cardiac hemodynamics via direct effects on the cardiomyocyte. Furthermore, incubation of cardiomyocytes with 12,13-diHOME increased mitochondrial respiration. The effects of 12,13-diHOME were absent in NOS1-/- mice and cardiomyocytes. We also provide the first evidence that 12,13-diHOME is decreased in human patients with heart disease. CONCLUSIONS: Our results identify an endocrine role for BAT to enhance cardiac function that is mediated by regulation of calcium cycling via 12,13-diHOME and NOS1.
Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/transplantation , Heart Failure/metabolism , Heart Failure/therapy , Lipidomics/methods , Oleic Acids/metabolism , Aged , Animals , Cells, Cultured , Cohort Studies , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oleic Acids/administration & dosage , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiologyABSTRACT
Age-related declines in cardiorespiratory fitness and physical function are mitigated by regular endurance exercise in older adults. This may be due, in part, to changes in the transcriptional program of skeletal muscle following repeated bouts of exercise. However, the impact of chronic exercise training on the transcriptional response to an acute bout of endurance exercise has not been clearly determined. Here, we characterized baseline differences in muscle transcriptome and exercise-induced response in older adults who were active/endurance trained or sedentary. RNA-sequencing was performed on vastus lateralis biopsy specimens obtained before, immediately after, and 3 h following a bout of endurance exercise (40 min of cycling at 60%-70% of heart rate reserve). Using a recently developed bioinformatics approach, we found that transcript signatures related to type I myofibers, mitochondria, and endothelial cells were higher in active/endurance-trained adults and were associated with key phenotypic features including VÌo2peak, ATPmax, and muscle fiber proportion. Immune cell signatures were elevated in the sedentary group and linked to visceral and intermuscular adipose tissue mass. Following acute exercise, we observed distinct temporal transcriptional signatures that were largely similar among groups. Enrichment analysis revealed catabolic processes were uniquely enriched in the sedentary group at the 3-h postexercise timepoint. In summary, this study revealed key transcriptional signatures that distinguished active and sedentary adults, which were associated with difference in oxidative capacity and depot-specific adiposity. The acute response signatures were consistent with beneficial effects of endurance exercise to improve muscle health in older adults irrespective of exercise history and adiposity.NEW & NOTEWORTHY Muscle transcript signatures associated with oxidative capacity and immune cells underlie important phenotypic and clinical characteristics of older adults who are endurance trained or sedentary. Despite divergent phenotypes, the temporal transcriptional signatures in response to an acute bout of endurance exercise were largely similar among groups. These data provide new insight into the transcriptional programs of aging muscle and the beneficial effects of endurance exercise to promote healthy aging in older adults.
Subject(s)
Physical Endurance , Transcriptome , Aged , Endothelial Cells , Exercise/physiology , Humans , Muscle, Skeletal/metabolism , Physical Endurance/physiologyABSTRACT
The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (VÌo2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.
Subject(s)
Cell Respiration/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Endurance Training , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Phospholipids/analysis , Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/analysis , Humans , Insulin Resistance/physiology , Lipidomics/methods , Male , Middle Aged , Phospholipids/metabolism , TranscriptomeABSTRACT
Skeletal muscle atrophy is a clinically important outcome of disuse because of injury, immobilization, or bed rest. Disuse atrophy is accompanied by mitochondrial dysfunction, which likely contributes to activation of the muscle atrophy program. However, the linkage of muscle mass and mitochondrial energetics during disuse atrophy and its recovery is incompletely understood. Transcriptomic analysis of muscle biopsies from healthy older adults subject to complete bed rest revealed marked inhibition of mitochondrial energy metabolic pathways. To determine the temporal sequence of muscle atrophy and changes in intramyocellular lipid and mitochondrial energetics, we conducted a time course of hind limb unloading-induced atrophy in adult mice. Mitochondrial respiration and calcium retention capacity were diminished, whereas H2O2 emission was increased within 3 days of unloading before significant muscle atrophy. These changes were associated with a decrease in total cardiolipin and profound changes in remodeled cardiolipin species. Hind limb unloading performed in muscle-specific peroxisome proliferator-activated receptor-γ coactivator-1α/ß knockout mice, a model of mitochondrial dysfunction, did not affect muscle atrophy but impacted muscle function. These data suggest early mitochondrial remodeling affects muscle function but not mass during disuse atrophy. Early alterations in mitochondrial energetics and lipid remodeling may represent novel targets to prevent muscle functional impairment caused by disuse and to enhance recovery from periods of muscle atrophy.
Subject(s)
Energy Metabolism , Mitochondria, Muscle/metabolism , Muscular Disorders, Atrophic/metabolism , Aged , Animals , Bed Rest , Calcium/metabolism , Cardiolipins/metabolism , Female , Hindlimb Suspension , Humans , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Muscular Disorders, Atrophic/physiopathology , Oxygen Consumption , Recovery of Function , Transcription Factors/genetics , Transcription Factors/metabolism , TranscriptomeABSTRACT
The long-term efficacy of bariatric surgery is not entirely clear, and weight regain and diabetes relapse are problems for some patients. Exercise is a feasible and clinically effective adjunct therapy for bariatric surgery patients. We hypothesize that exercise is also a critical factor for long-term weight loss maintenance and lasting remission of type 2 diabetes.
Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2/prevention & control , Exercise , Obesity/surgery , Weight Loss , Body Weight Maintenance , Combined Modality Therapy , Humans , Recurrence , Treatment Outcome , Weight GainABSTRACT
Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1ß serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1ß affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1ß overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1ß overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (VÌo2) did not change from baseline with increasing treadmill speed [peak VÌo2 (ΔVÌo2max)] was maintained in trained mice with PGC-1ß overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1ß overexpression. We conclude that while activation of muscle PGC-1ß is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy.
Subject(s)
Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal/methods , Physical Endurance/physiology , Physical Fitness/physiology , Running/physiology , Animals , Male , Mice , Mice, Transgenic , Muscular Disorders, Atrophic/physiopathology , Muscular Disorders, Atrophic/prevention & control , PhenotypeABSTRACT
The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.
Subject(s)
Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Transcription Factors/genetics , Transcription Factors/physiology , Aerobiosis , Animals , Cell Nucleus/metabolism , Corticosterone/blood , Cytosol/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Hypoglycemic Agents/pharmacology , Male , Mechanistic Target of Rapamycin Complex 1/physiology , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Muscle Fatigue , Receptors, Glucocorticoid/metabolismABSTRACT
Obesity predisposes an individual to develop numerous comorbidities, including type 2 diabetes, and represents a major healthcare issue in many countries worldwide. Bariatric surgery can be an effective treatment option, resulting in profound weight loss and improvements in metabolic health; however, not all patients achieve similar weight loss or metabolic improvements. Exercise is an excellent way to improve health, with well-characterized physiological and psychological benefits. In the present paper we review the evidence to determine whether there may be a role for exercise as a complementary adjunct therapy to bariatric surgery. Objectively measured physical activity data indicate that most patients who undergo bariatric surgery do not exercise enough to reap the health benefits of exercise. While there is a dearth of data on the effects of exercise on weight loss and weight loss maintenance after surgery, evidence from studies of caloric restriction and exercise suggest that similar adjunctive benefits may be extended to patients who perform exercise after bariatric surgery. Recent evidence from exercise interventions after bariatric surgery suggests that exercise may provide further improvements in metabolic health compared with surgery-induced weight loss alone. Additional randomized controlled exercise trials are now needed as the next step to more clearly define the potential for exercise to provide additional health benefits after bariatric surgery. This valuable evidence will inform clinical practice regarding much-needed guidelines for exercise after bariatric surgery.
Subject(s)
Bariatric Surgery , Exercise Therapy , Obesity/therapy , Caloric Restriction , Combined Modality Therapy , Humans , Treatment Outcome , Weight LossABSTRACT
We hypothesized that acute lipid-induced insulin resistance would be attenuated in high-oxidative muscle of lean trained (LT) endurance athletes due to their enhanced metabolic flexibility and mitochondrial capacity. Lean sedentary (LS), obese sedentary (OS), and LT participants completed two hyperinsulinemic euglycemic clamp studies with and without (glycerol control) the coinfusion of Intralipid. Metabolic flexibility was measured by indirect calorimetry as the oxidation of fatty acids and glucose during fasted and insulin-stimulated conditions, the latter with and without lipid oversupply. Muscle biopsies were obtained for mitochondrial and insulin-signaling studies. During hyperinsulinemia without lipid, glucose infusion rate (GIR) was lowest in OS due to lower rates of nonoxidative glucose disposal (NOGD), whereas state 4 respiration was increased in all groups. Lipid infusion reduced GIR similarly in all subjects and reduced state 4 respiration. However, in LT subjects, fat oxidation was higher with lipid oversupply, and although glucose oxidation was reduced, NOGD was better preserved compared with LS and OS subjects. Mitochondrial performance was positively associated with better NOGD and insulin sensitivity in both conditions. We conclude that enhanced mitochondrial performance with exercise is related to better metabolic flexibility and insulin sensitivity in response to lipid overload.
Subject(s)
Insulin Resistance , Lipids/administration & dosage , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Adult , Cell Respiration/drug effects , Emulsions/pharmacology , Energy Metabolism/drug effects , Female , Glucose Clamp Technique , Humans , Male , Mitochondria, Muscle/physiology , Phospholipids/pharmacology , Soybean Oil/pharmacology , Time Factors , Young AdultABSTRACT
Findings from the Study of Muscle, Mobility and Aging (SOMMA) in this issue of Aging Cell show that several biological pathways in skeletal muscle cells play an important role in determining mobility in older adults. These are based on assays in skeletal muscle biopsies obtained from participants, aged 70 years and older in SOMMA tested for association with assessments related to mobility, including muscle mass, strength, power, cardiopulmonary fitness, and 400 m walking speed. The papers show that, using mass spectrometry, oxidative modifications of proteins essential to myocellular function are associated with poorer mobility. Using RNA-seq to quantify gene expression, lower levels of expression of antioxidant enzymes located in mitochondria, autophagy, patterns of expression of genes involved in autophagy, and higher levels of RNA transcripts that increase with denervation were associated with poorer performance on tests of mobility. These results extend previous research from the Baltimore Longitudinal Study of Aging and recent studies from SOMMA showing the importance of mitochondrial energetics in mobility. Together, these findings are painting a picture of how fundamental cellular processes influence the loss of mobility with aging. They may also be a window on aging in other cells, tissues, and systems. The data collected in SOMMA are publicly available and SOMMA welcomes collaborations with scientists who are interested in research about human aging.
Subject(s)
Aging , Humans , Aging/physiology , Aging/metabolism , Aged , Muscle, Skeletal/metabolismABSTRACT
OBJECTIVES: Non-Hispanic black women (BW) have a greater risk of type 2 diabetes (T2D) and insulin resistance (IR) compared to non-Hispanic white women (WW). The mechanisms leading to these differences are not understood, and it is unclear whether synergistic effects of race and obesity impact disease risk. To understand the interaction of race and weight, hepatic and peripheral IR were compared in WW and BW with and without obesity. METHODS: Hepatic and peripheral IR was measured by a labeled, hyperinsulinemic-euglycemic clamp in BW (n=32) and WW (n=32) with and without obesity. Measurements of body composition, cardiorespiratory fitness, and skeletal muscle (SM) respiration were completed. Data were analyzed by mixed model ANOVA. RESULTS: Subjects with obesity had greater hepatic and peripheral IR and lower SM respiration (P<0.001). Despite 14% greater insulin (P=0.066), BW tended to have lower peripheral glucose disposal (Rd; P=0.062), which was driven by women without obesity (P=0.002). BW had significantly lower glucose production (P=0.005), hepatic IR (P=0.024), and maximal coupled and uncoupled respiration (P<0.001) than WW. Maximal coupled and uncoupled SM mitochondrial respiration was strongly correlated with peripheral and hepatic IR (P<0.01). CONCLUSION: While BW without obesity had lower Rd than WW, race and obesity did not synergistically impact peripheral IR. Paradoxically, WW with obesity had greater hepatic IR compared to BW. Relationships between SM respiration and IR persisted across a range of body weight. These data provide support for therapies in BW, like exercise, that improve SM mitochondrial respiration to reduce IR and T2D risk.
ABSTRACT
BACKGROUND: The TAS1R2 receptor, known for its role in taste perception, has also emerged as a key regulator of muscle physiology. Previous studies have shown that genetic ablation of TAS1R2 in mice enhances muscle fitness mimicking responses to endurance exercise training. However, the translational relevance of these findings to humans remains uncertain. METHODS: We explored responses to endurance exercise training in mice and humans with genetic deficiency of TAS1R2. First, we assessed the effects of muscle-specific deletion of TAS1R2 in mice (mKO) or wild type controls (mWT) following 4 weeks of voluntary wheel running (VWR). Next, we investigated the effects of the TAS1R2-Ile191Val (rs35874116) partial loss-of-function variant on responses to a 6-month diet-induced weight loss with exercise training (WLEX), weight loss alone (WL), or education control (CON) interventions in older individuals with obesity. Participants were retrospectively genotyped for the TAS1R2-Ile191Val polymorphism and classified as conventional function (Ile/Ile) or partial loss-of-function (Val carriers: Ile/Val and Val/Val). Body composition, cardiorespiratory fitness, and skeletal muscle mitochondrial function were assessed before and after the intervention. RESULTS: In response to VWR, mKO mice demonstrated enhanced running endurance and mitochondrial protein content. Similarly, TAS1R2 Val carriers exhibited distinctive improvements in body composition, including increased muscle mass, along with enhanced cardiorespiratory fitness and mitochondrial function in skeletal muscle following the WLEX intervention compared to Ile/Ile counterparts. Notably, every Val carrier demonstrated substantial responses to exercise training and weight loss, surpassing all Ile/Ile participants in overall performance metrics. CONCLUSIONS: Our findings suggest that TAS1R2 partial loss-of-function confers beneficial effects on muscle function and metabolism in humans in response to exercise training, akin to observations in TAS1R2 muscle-deficient mice. Targeting TAS1R2 may help enhancing exercise training adaptations in individuals with compromised exercise tolerance or metabolic disorders, presenting a potential avenue for personalized exercise interventions.
ABSTRACT
BACKGROUND: Frailty can occur in older adults without disability or multimorbidity. Current methods focus on the most frail, but poorly discriminate among those "not frail." METHODS: The Study of Muscle, Mobility, and Aging (SOMMA) included 879 adults aged 70 years and older without mobility disability. We operationalized frailty domains using: peak oxygen consumption (endurance), digit symbol substitution test (speed), leg power (strength), perceived fatigability, D3 creatine dilution (sarcopenia), and accelerometry (sedentary behavior) to construct a frailty score of 0-12 summing tertiles (0-2) of each component. We used linear or logistic regression with and without adjustment for confounders to examine associations with age, reported, and performance function. RESULTS: The SOMMA frailty score distribution was broad and strongly associated with age (râ =â 0.33, pâ <â .0001). Each point was associated with a 30%-50% higher odds of having reported difficulty with activities of daily living or mobility. After grouping the total score (0-3, 4-7, and 8-12) those in the highest group were 9-31 times more likely to have functional limitation, and at least 8 times more likely to have poorer function after full adjustment. Higher scores identified those less likely to report ease of walking or higher physical activity. Peak oxygen consumption, leg power, fatigability, and digit symbol score contributed most to these associations. CONCLUSIONS: The SOMMA frailty score characterizes frailty as a continuum from frail to vigorous with assessments that are amenable to change. Associations with age and function suggest utility for distinguishing a wide range of vigor and vulnerability in relatively well-functioning older adults.
Subject(s)
Frailty , Aged , Humans , Aged, 80 and over , Frailty/diagnosis , Activities of Daily Living , Geriatric Assessment , Aging , MusclesABSTRACT
AIM: High-resolution respirometry in human permeabilized muscle fibers is extensively used for analysis of mitochondrial adaptions to nutrition and exercise interventions, and is linked to athletic performance. However, the lack of standardization of experimental conditions limits quantitative inter- and intra-laboratory comparisons. METHODS: In our study, an international team of investigators measured mitochondrial respiration of permeabilized muscle fibers obtained from three biopsies (vastus lateralis) from the same healthy volunteer to avoid inter-individual variability. High-resolution respirometry assays were performed together at the same laboratory to assess whether the heterogenity in published results are due to the effects of respiration media (MiR05 versus Z) with or without the myosin inhibitor blebbistatin at low- and high-oxygen regimes. RESULTS: Our findings reveal significant differences between respiration media for OXPHOS and ETcapacities supported by NADH&succinate-linked substrates at different oxygen concentrations. Respiratory capacities were approximately 1.5-fold higher in MiR05 at high-oxygen regimes compared to medium Z near air saturation. The presence or absence of blebbistatin in human permeabilized muscle fiber preparations was without effect on oxygen flux. CONCLUSION: Our study constitutes a basis to harmonize and establish optimum experimental conditions for respirometric studies of permeabilized human skeletal muscle fibers to improve reproducibility.
Subject(s)
Cell Respiration , Mitochondria, Muscle , Muscle Fibers, Skeletal , Oxygen Consumption , Humans , Muscle Fibers, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation , Male , Oxygen/metabolism , Adult , Heterocyclic Compounds, 4 or More Rings/pharmacology , Healthy VolunteersABSTRACT
BACKGROUND: Slower gait speed may be driven by greater energy deficits and fatigability among older adults. We examined associations of walking energetics and perceived physical fatigability with gait speed among slower and faster walkers. Additionally, we used statistical mediation to examine the role of fatigability in the associations of walking energetics and gait speed using the Study of Muscle, Mobility and Aging (SOMMA). METHODS: Perceived physical fatigability was assessed using the Pittsburgh Fatigability Scale (PFS) Physical score (range 0-50, higherâ =â greater). A 3-phase cardiopulmonary exercise treadmill test collected peak oxygen consumption (VO2peak, mL/kg/min), energetic cost of walking (ECW, mL/kg/m), and cost-capacity ratio (VO2/VO2peak*100, %). Slower (<1.01 m/s) versus faster (≥1.01 m/s) walkers were classified using median 4-m gait speed. Linear regressions and statistical mediation analyses were conducted. RESULTS: Slower walkers had lower VO2peak, higher ECW at preferred walking speed (PWS), and greater PFS Physical score compared to faster walkers (all pâ <â .05; Nâ =â 849). One standard deviation (1-SD) higher VO2peak was associated with 0.1 m/s faster gait speed, while 1-SD higher ECW PWS, cost-capacity ratio at PWS and slow walking speed (SWS), and PFS Physical score were associated with 0.02-0.23 m/s slower gait speed. PFS Physical score was a significant statistical mediator in the associations between VO2peak (15.2%), SWS cost-capacity ratio (15.9%), and ECW PWS (10.7%) with gait speed and was stronger among slower walkers. CONCLUSIONS: Slower walkers may be more influenced by perceptions of fatigue in addition to walking energetics. Our work highlights the importance of targeting both energetics and perceived fatigability to prevent mobility decline.
Subject(s)
Energy Metabolism , Fatigue , Oxygen Consumption , Walking Speed , Walking , Humans , Male , Walking Speed/physiology , Female , Aged , Energy Metabolism/physiology , Oxygen Consumption/physiology , Fatigue/physiopathology , Walking/physiology , Exercise Test/methods , Aging/physiology , Middle Aged , Aged, 80 and overABSTRACT
OBJECTIVE: Our objective was to investigate the overall and sex-specific relationships between the presence and severity of knee osteoarthritis (KOA) and muscle composition, power, and energetics in older adults. METHODS: Male and female patients (n = 655, mean ± SD age 76.1 ± 4.9 years; 57% female) enrolled in the Study of Muscle, Mobility, and Aging completed standing knee radiographs and knee pain assessments. Participants were divided into three groups using Kellgren-Lawrence grade (KLG) of KOA severity (0-1, 2, or 3-4). Outcome measures included whole-body muscle mass, thigh fat-free muscle (FFM) volume and muscle fat infiltration (MFI), leg power, specific power (power normalized to muscle volume), and muscle mitochondrial energetics. RESULTS: Overall, the presence and severity of KOA is associated with greater MFI, lower leg power and specific power, and reduced oxidative phosphorylation (P trend < 0.036). Sex-specific analysis revealed reduced energetics only in female patients with KOA (P trend < 0.007) compared to female patients without KOA. In models adjusted for age, sex, race, nonsteroidal anti-inflammatory drug administration, site or technician, physical activity, height, and participants with abdominal adiposity with KLG 3 to 4 had greater MFI (mean 0.008%, 95% confidence interval [CI] 0.004%-0.011%) and lower leg power (mean -51.56 W, 95% CI -74.03 to -29.10 W) and specific power (mean -5.38 W/L, 95% CI -7.31 to -3.45 W/L) than those with KLG 0 to 1. No interactions were found between pain and KLG status. Among those with KOA, MFI and oxidative phosphorylation were associated with thigh FFM volume, leg power, and specific power. CONCLUSION: Muscle health is associated with the presence and severity of KOA and differs by sex. Although muscle composition and power are lower in both male and female patients with KOA, regardless of pain status, mitochondrial energetics is reduced only in female patients.
ABSTRACT
BACKGROUND: Muscle mass loss may be associated with liver fat accumulation, yet scientific consensus is lacking and evidence in older adults is scant. It is unclear which muscle characteristics might contribute to this association in older adults. METHODS: We associated comprehensive muscle-related phenotypes including muscle mass normalized to body weight (D3-creatine dilution), muscle fat infiltration (magnetic resonance imaging), carbohydrate-supported muscle mitochondrial maximal oxidative phosphorylation (respirometry), and cardiorespiratory fitness (VO2 peak) with liver fat among older adults. Linear regression models adjusted for age, gender, technician (respirometry only), daily minutes of moderate-to-vigorous physical activity, and prediabetes/diabetes status tested main effects and interactions of each independent variable with waist circumference (high: women-≥88 cm, men-≥102 cm) and gender. RESULTS: Among older adults aged 75 (interquartile range: 73, 79 years; 59.8% women), muscle mass and liver fat were not associated overall (Nâ =â 362) but were positively associated among participants with a high waist circumference (ß: 25.2; 95% confidence intervals [95% CI]: 11.7, 40.4; pâ =â .0002; Nâ =â 160). Muscle fat infiltration and liver fat were positively associated (ß: 15.2; 95% CI: 6.8, 24.3; pâ =â .0003; Nâ =â 378). Carbohydrate-supported maximum oxidative phosphorylation (before adjustment) and VO2 peak (after adjustment; ß: -12.9; 95% CI: -20.3, -4.8; pâ =â .003; Nâ =â 361) were inversely associated with liver fat; adjustment attenuated the estimate for maximum oxidative phosphorylation although the point estimate remained negative (ß: -4.0; 95% CI: -11.6, 4.2; pâ =â .32; Nâ =â 321). CONCLUSIONS: Skeletal muscle-related characteristics are metabolically relevant factors linked to liver fat in older adults. Future research should confirm our results to determine whether trials targeting mechanisms common to liver and muscle fat accumulation are warranted.
Subject(s)
Cardiorespiratory Fitness , Male , Humans , Female , Aged , Muscle, Skeletal/physiology , Body Weight , Liver , CarbohydratesABSTRACT
BACKGROUND: Fatigability in community-dwelling older adults is highly prevalent and disabling, but lacks a treatment. Greater nigrostriatal dopaminergic signaling can ameliorate performance fatigability in healthy young adults, but its role in community-dwelling older adults is not known. We hypothesized that higher nigrostriatal dopaminergic integrity would be associated with lower performance fatigability, independent of cardiopulmonary and musculoskeletal energetics and other health conditions. METHODS: In 125 older adults participating in the Study of Muscle, Mobility and Aging, performance fatigability was measured as performance deterioration during a fast 400 m walk (% slowing down from the 2nd to the 9th lap). Nigrostriatal DA integrity was measured using (+)-[11C] dihydrotetrabenazine (DTBZ) PET imaging. The binding signal was obtained separately for the subregions regulating sensorimotor (posterior putamen), reward (ventral striatum), and executive control processes (dorsal striatum). Multivariable linear regression models of performance fatigability (dependent variable) estimated the coefficients of dopamine integrity in striatal subregions, adjusted for demographics, comorbidities, and cognition. Models were further adjusted for skeletal muscle energetics (via biopsy) and cardiopulmonary fitness (via cardiopulmonary exercise testing). RESULTS: Higher [11C]-DTBZ binding in the posterior putamen was significantly associated with lower performance fatigability (demographic-adjusted standardized ßâ =â -1.08, 95% CI: -1.96, -0.20); results remained independent of adjustment for other covariates, including cardiopulmonary and musculoskeletal energetics. Associations with other striatal subregions were not significant. DISCUSSION: Dopaminergic integrity in the sensorimotor striatum may influence performance fatigability in older adults without clinically overt diseases, independent of other aging systems.
Subject(s)
Dopamine , Fatigue , Independent Living , Positron-Emission Tomography , Humans , Male , Aged , Female , Dopamine/metabolism , Fatigue/physiopathology , Fatigue/metabolism , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Physical Functional Performance , Tetrabenazine/analogs & derivatives , Aged, 80 and overABSTRACT
BACKGROUND: How magnetic resonance (MR) derived thigh muscle volume and deuterated creatine dilution derived muscle mass (D3Cr muscle mass) differentially relate to strength, fitness, and other functions in older adults-and whether associations vary by sex-is not known. METHODS: Men (Nâ =â 345) and women (Nâ =â 482) aged ≥70 years from the Study of Muscle, Mobility, and Aging completed leg extension strength (1-repetition max) and cardiopulmonary exercise testing to assess fitness (VO2peak). Correlations and adjusted regression models stratified by sex were used to assess the association between muscle size measures, study outcomes, and sex interactions. RESULTS: D3Cr muscle mass and MR thigh muscle volume were correlated (men: râ =â 0.62, women: râ =â 0.51, pâ <â .001). Each standard deviation (SD) decrement in D3Cr muscle mass was associated with lower 1-repetition max strength (-14 kg men, -4 kg women, pâ <â .001 for both; p-interactionâ =â .003) and lower VO2peak (-79 mL/min men, -30 mL/min women, pâ <â .001 for both, p-interaction: .016). Each SD decrement in MR thigh muscle volume was also associated with lower strength (-32 kg men, -20 kg women, pâ <â .001 for both; p-interactionâ =â .139) and lower VO2peak (-217 mL/min men, -111 mL/min women, pâ <â .001 for both, p-interactionâ =â .010). There were associations, though less consistent, between muscle size or mass with physical performance and function; associations varied by sex. CONCLUSIONS: Less muscle-measured by either D3Cr muscle mass or MR thigh muscle volume-was associated with lower strength and fitness. Varied associations by sex and assessment method suggest consideration be given to which measurement to use in future studies.