Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nat Mater ; 23(7): 937-943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38755291

ABSTRACT

The efficiency of two-dimensional Dion-Jacobson-type materials relies on the complex interplay between electronic and lattice dynamics; however, questions remain about the functional role of exciton-phonon interactions. Here we establish the robust polaronic nature of the excitons in these materials at room temperature by combining ultrafast spectroscopy and electronic structure calculations. We show that polaronic distortion is associated with low-frequency (30-60 cm-1) lead iodide octahedral lattice motions. More importantly, we discover how targeted ligand modification of this two-dimensional perovskite structure manipulates exciton-phonon coupling, exciton polaron population and carrier cooling. At high excitation density, stronger exciton-phonon coupling increases the hot-carrier lifetime, forming a hot-phonon bottleneck. Our study provides detailed insight into the exciton-phonon coupling and its role in carrier cooling in two-dimensional perovskites relevant for developing emerging hybrid semiconductor materials with tailored properties.

2.
Nature ; 543(7647): 647-656, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28358065

ABSTRACT

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.


Subject(s)
Biophysics , Models, Biological , Models, Chemical , Electrons , Energy Transfer , Metals/chemistry , Models, Molecular , Motion , Quantum Theory , Spectrum Analysis , Time Factors , Vibration
3.
J Chem Phys ; 154(22): 224109, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34241200

ABSTRACT

Ensembles of ab initio parameterized Frenkel-exciton model Hamiltonians for different perylene diimide dimer systems are used, together with various dissipative quantum dynamics approaches, to study the influence of the solvation environment and fluctuations in chromophore relative orientation and packing on the vibronic spectra of two different dimer systems: a π-stacked dimer in aqueous solution in which the relative chromophore geometry is strongly confined by a phosphate bridge and a side-by-side dimer in dichloromethane involving a more flexible alkyne bridge that allows quasi-free rotation of the chromophores relative to one another. These entirely first-principles calculations are found to accurately reproduce the main features of the experimental absorption spectra, providing a detailed mechanistic understanding of how the structural fluctuations and environmental interactions influence the vibronic dynamics and spectroscopy of solutions of these multi-chromophore complexes.

4.
J Chem Phys ; 155(1): 014108, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34241392

ABSTRACT

The truncated Wigner approximation to quantum dynamics in phase space is explored in the context of computing vibronic line shapes for monomer linear optical spectra. We consider multiple model potential forms including a shifted harmonic oscillator with both equal and unequal frequencies on the ground and excited state potentials as well as a shifted Morse potential model. For the equal-frequency shifted harmonic oscillator model, we derive an analytic expression for the exact vibronic line shape that emphasizes the importance of using a quantum mechanical distribution of phase space initial conditions. For the unequal-frequency shifted harmonic oscillator model, we are no longer able to obtain an exact expression for the vibronic line shape in terms of independent deterministic classical trajectories. We show how one can rigorously account for corrections to the truncated Wigner approximation through nonlinear responses of the line shape function to momentum fluctuations along a classical trajectory and demonstrate the qualitative improvement in the resulting spectrum when the leading-order quantum correction is included. Finally, we numerically simulate absorption spectra of a highly anharmonic shifted Morse potential model. We find that, while finite quantization and the dissociation limit are captured with reasonable accuracy, there is a qualitative breakdown of the quasi-classical trajectory ensemble's ability to describe the vibronic line shape when the relative shift in Morse potentials becomes large. The work presented here provides clarity on the origin of unphysical negative features known to contaminate absorption spectra computed with quasi-classical trajectory ensembles.

5.
J Am Chem Soc ; 141(1): 148-153, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30566336

ABSTRACT

Asymmetric synthesis of the biologically active xanthone dimer griffipavixanthone is reported along with its absolute stereochemistry determination. Synthesis of the natural product is accomplished via dimerization of a p-quinone methide using a chiral phosphoric acid catalyst to afford a protected precursor in excellent diastereo- and enantioselectivity. Mechanistic studies, including an unbiased computational investigation of chiral ion-pairs using parallel tempering, were performed in order to probe the mode of asymmetric induction.


Subject(s)
Phosphoric Acids/chemistry , Xanthones/chemistry , Xanthones/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic , Models, Molecular , Molecular Conformation
6.
Faraday Discuss ; 221(0): 59-76, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31552998

ABSTRACT

For over a decade there has been some significant excitement and speculation that quantum effects may be important in the excitation energy transport process in the light harvesting complexes of certain bacteria and algae, in particular via the Fenna-Matthews-Olsen (FMO) complex. Whilst the excitement may have waned somewhat with the realisation that the observed long-lived oscillations in two-dimensional electronic spectra of FMO are probably due to vibronic coherences, it remains a question whether these coherences may play any important role. We review our recent work showing how important the site-to-site variation in coupling between chloroplasts in FMO and their protein scaffold environment is for energy transport in FMO and investigate the role of vibronic modes in this transport. Whilst the effects of vibronic excitations seem modest for FMO, we show that for bilin-based pigment-protein complexes of marine algae, in particular PC645, the site-dependent vibronic excitations seem essential for robust excitation energy transport, which may again open the door for important quantum effects to be important in these photosynthetic complexes.


Subject(s)
Chlorophyta/chemistry , Light-Harvesting Protein Complexes/metabolism , Pigments, Biological/metabolism , Quantum Theory , Chlorophyta/metabolism , Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Pigments, Biological/chemistry
7.
J Chem Phys ; 151(15): 154114, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640350

ABSTRACT

A new approximate coherent state path integral approach, which enables accurate and efficient dynamical treatment of model Hamiltonians that incorporate excited electronic states of multiple chromophores that are coupled to discrete high frequency harmonic vibrational modes, is presented. The approach is based on the mapping Hamiltonian formalism for the electronic states together with semiclassical coherent state expressions for the forward and backward propagators describing the quantum bath modes. The density matrix dynamics is propagated in the full coherent state basis for the electronic mapping and discrete vibrational mode oscillators using ensembles of weighted trajectories. An effective scheme for projecting the ensemble onto selected vibronic basis states is presented enabling the evolution of the reduced system density matrix to be monitored as well as exploring the importance of selected vibronic relaxation pathways in the multichromophore system dynamics. The approach is demonstrated for simple model Hamiltonians, and we show how this coherent state density matrix propagation approach for high frequency discrete harmonic vibrational modes can be combined with partial linearized density matrix propagation to treat an additional continuum bath of low frequency environmental modes that could, in principle, include anharmonicity.

8.
J Chem Phys ; 151(17): 174708, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703489

ABSTRACT

Thermal transport through model copper-polyethylene interfaces is studied using two-temperature nonequilibrium molecular dynamics. This approach treats electronic and phonon contributions to the thermal transport in the metallic region, but only phonon mediated transport is assumed in the polymer. Results are compared with nonequilibrium molecular dynamics simulations of heat transport in which only phonon contributions are incorporated. The influence of the phase of the polymer component (crystalline, amorphous, and lamella) and, where relevant, its orientation relative to the metallic interface structure is explored. These computational studies suggest that the thermal conductivity of the metal-polymer interface can be more than 40 times greater when the polymer chains of the lamella are oriented perpendicular to the interface than the situation when the interface is formed by an amorphous polymer or a crystalline polymer phase in which the chains orient parallel to the interface. The simulations suggest that the phonon contribution to the thermal conductivity of the copper region can be increased by as much as a factor of three when coupling between the electrons and phonons in the metal region is incorporated. This, combined with the explicit inclusion of the purely electronic component of the thermal transport in the metal region, can lead to a substantial increase in the heat flux promoted by the interface while maintaining a constant temperature drop. These simulation results have important implications for designing materials that have excellent electrical insulation properties but can also be highly effective in heat conduction.

9.
J Chem Phys ; 148(18): 181102, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29764153

ABSTRACT

The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.

10.
Biochim Biophys Acta ; 1857(9): 1627-1640, 2016 09.
Article in English | MEDLINE | ID: mdl-27372198

ABSTRACT

While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.


Subject(s)
Photosynthesis , Bacterial Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Photosystem I Protein Complex/chemistry , Photosystem II Protein Complex/chemistry , Phycobilisomes/chemistry
11.
J Am Chem Soc ; 139(23): 7803-7814, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28521106

ABSTRACT

There have been numerous efforts, both experimental and theoretical, that have attempted to parametrize model Hamiltonians to describe excited state energy transfer in photosynthetic light harvesting systems. The Frenkel exciton model, with its set of electronically coupled two level chromophores that are each linearly coupled to dissipative baths of harmonic oscillators, has become the workhorse of this field. The challenges to parametrizing such Hamiltonians have been their uniqueness, and physical interpretation. Here we present a computational approach that uses accurate first-principles electronic structure methods to compute unique model parameters for a collection of local minima that are sampled with molecular dynamics and QM geometry optimization enabling the construction of an ensemble of local models that captures fluctuations as these systems move between local basins of inherent structure. The accuracy, robustness, and reliability of the approach is demonstrated in an application to the phycobiliprotein light harvesting complexes from cryptophyte algae. Our computed Hamiltonian ensemble provides a first-principles description of inhomogeneous broadening processes, and a standard approximate non-Markovian reduced density matrix dynamics description is used to estimate lifetime broadening contributions to the spectral line shape arising from electronic-vibrational coupling. Despite the overbroadening arising from this approximate line shape theory, we demonstrate that our model Hamiltonian ensemble approach is able to provide a reliable fully first-principles method for computation of spectra and can distinguish the influence of different chromophore protonation states in experimental results. A key feature in the dynamics of these systems is the excitation of intrachromophore vibrations upon electronic excitation and energy transfer. We demonstrate that the Hamiltonian ensemble approach provides a reliable first-principles description of these contributions that have been detailed in recent broad-band pump-probe and two-dimensional electronic spectroscopy experiments.


Subject(s)
Cryptophyta/chemistry , Light-Harvesting Protein Complexes/metabolism , Molecular Dynamics Simulation , Phycobiliproteins/metabolism , Quantum Theory , Cryptophyta/metabolism , Light-Harvesting Protein Complexes/chemistry , Phycobiliproteins/chemistry
12.
Annu Rev Phys Chem ; 67: 639-68, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27090842

ABSTRACT

This article reviews recent progress in the theoretical modeling of excitation energy transfer (EET) processes in natural light harvesting complexes. The iterative partial linearized density matrix path-integral propagation approach, which involves both forward and backward propagation of electronic degrees of freedom together with a linearized, short-time approximation for the nuclear degrees of freedom, provides an accurate and efficient way to model the nonadiabatic quantum dynamics at the heart of these EET processes. Combined with a recently developed chromophore-protein interaction model that incorporates both accurate ab initio descriptions of intracomplex vibrations and chromophore-protein interactions treated with atomistic detail, these simulation tools are beginning to unravel the detailed EET pathways and relaxation dynamics in light harvesting complexes.

13.
J Phys Chem Lett ; 15(28): 7125-7132, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38959027

ABSTRACT

Photosynthetic organisms use light-harvesting complexes to increase the spectrum of light that they absorb from solar photons. Recent ultrafast spectroscopic studies have revealed that efficient (sub-ps) energy transfer is mediated by vibronic coherence in the phycobiliprotein phycocyanin 645 (PC645). Here, we report studies that employ broadband pump-probe spectroscopy with linearly chirped excitation pulses to further investigate the relationship between vibronic state preparation and energy transfer dynamics in PC645. Negatively chirped pulse excitation is found to enhance wavepackets of a high-frequency mode (1580 cm-1) and increase the rate of downhill energy transfer, while on the other hand, positively chirped pulses suppress these oscillatory features and decrease this rate. Model calculations incorporating the influence of the chirped pump pulse are used to understand its effect on initial state preparation. These results provide mechanistic insight into how the overall nonequilibrium rate of energy transfer is influenced by initial state preparation.

14.
J Chem Phys ; 139(15): 151103, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24160492

ABSTRACT

A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.


Subject(s)
Thermodynamics , Electron Transport , Quantum Theory , Time Factors
15.
J Chem Phys ; 137(22): 22A535, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23249072

ABSTRACT

Powerful approximate methods for propagating the density matrix of complex systems that are conveniently described in terms of electronic subsystem states and nuclear degrees of freedom have recently been developed that involve linearizing the density matrix propagator in the difference between the forward and backward paths of the nuclear degrees of freedom while keeping the interference effects between the different forward and backward paths of the electronic subsystem described in terms of the mapping Hamiltonian formalism and semi-classical mechanics. Here we demonstrate that different approaches to developing the linearized approximation to the density matrix propagator can yield a mean-field like approximate propagator in which the nuclear variables evolve classically subject to Ehrenfest-like forces that involve an average over quantum subsystem states, and by adopting an alternative approach to linearizing we obtain an algorithm that involves classical like nuclear dynamics influenced by a quantum subsystem state dependent force reminiscent of trajectory surface hopping methods. We show how these different short time approximations can be implemented iteratively to achieve accurate, stable long time propagation and explore their implementation in different representations. The merits of the different approximate quantum dynamics methods that are thus consistently derived from the density matrix propagator starting point and different partial linearization approximations are explored in various model system studies of multi-state scattering problems and dissipative non-adiabatic relaxation in condensed phase environments that demonstrate the capabilities of these different types of approximations for treating non-adiabatic electronic relaxation, bifurcation of nuclear distributions, and the passage from nonequilibrium coherent dynamics at short times to long time thermal equilibration in the presence of a model dissipative environment.

16.
J Chem Phys ; 136(11): 115102, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22443796

ABSTRACT

Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light harvesting complex, we explore the influence of including correlations in inter-chromophore couplings between different chromophore dimers that share a common chromophore. We find that the relative sign of the different correlations can have profound influence on decoherence time and energy transfer rate and can provide sensitive control of relaxation in these complex quantum dynamical open systems.


Subject(s)
Electrons , Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Quantum Theory , Rhodobacter sphaeroides/chemistry , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Rhodobacter sphaeroides/metabolism
17.
J Chem Phys ; 136(19): 194505, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22612101

ABSTRACT

The ultrafast enol-keto photoisomerization in the lowest singlet excited state of 3-hydroxyflavone is investigated using classical molecular dynamics in conjunction with empirical valence bond (EVB) potentials for the description of intramolecular interactions, and a molecular mechanics and variable partial charge model, dependent on transferring proton position, for the description of solute-solvent interactions. A parallel multi-level genetic program was used to accurately fit the EVB potential energy surfaces to high level ab initio data. We have studied the excited state intramolecular proton transfer (ESIPT) reaction in three different solvent environments: methylcyclohexane, acetonitrile, and methanol. The effects of the environment on the proton transfer time and the underlying mechanisms responsible for the varied time scales of the ESIPT reaction rates are analyzed. We find that simulations with our EVB potential energy surfaces accurately reproduce experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all three solvents. Furthermore, we find that the ultrafast ESIPT process results from a combination of ballistic transfer, and intramolecular vibrational redistribution, which leads to the excitation of a set of low frequency promoting vibrational modes. From this set of promoting modes, we find that an O-O in plane bend and a C-H out of plane bend are present in all three solvents, indicating that they are fundamental to the ultrafast proton transfer. Analysis of the slow proton transfer trajectories reveals a solvent mediated proton transfer mechanism, which is diffusion limited.

18.
J Chem Theory Comput ; 18(4): 2047-2061, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35230105

ABSTRACT

The emergence of experiments capable of probing quantum dynamics at the single-molecule level requires the development of new theoretical tools capable of simulating and analyzing these dynamics beyond an ensemble-averaged description. In this article, we present an efficient method for sampling and simulating the dynamics of the individual quantum systems that make up an ensemble and apply it to study the nonequilibrium dynamics of the ubiquitous spin-boson model. We generate an ensemble of single-system trajectories, and we analyze this trajectory ensemble using tools from classical statistical mechanics. Our results demonstrate that the dynamics of quantum coherence is highly heterogeneous at the single-system level due to variations in the initial bath configuration, which significantly affects the transient exchange of coherence between the system and its bath. We observe that single systems tend to retain coherence over time scales longer than that of the ensemble. We also compute a novel thermodynamic entanglement entropy that quantifies a thermodynamic driving force favoring system-bath entanglement.


Subject(s)
Thermodynamics , Entropy
19.
J Chem Phys ; 135(20): 201101, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22128918

ABSTRACT

An approach for treating dissipative, non-adiabatic quantum dynamics in general model systems at finite temperature based on linearizing the density matrix evolution in the forward-backward path difference for the environment degrees of freedom is presented. We demonstrate that the approach can capture both short time coherent quantum dynamics and long time thermal equilibration in an application to excitation energy transfer in a model photosynthetic light harvesting complex. Results are also presented for some nonadiabatic scattering models which indicate that, even though the method is based on a "mean trajectory" like scheme, it can accurately capture electronic population branching through multiple avoided crossing regions and that the approach offers a robust and reliable way to treat quantum dynamical phenomena in a wide range of condensed phase applications.

20.
J Chem Phys ; 135(4): 044115, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21806098

ABSTRACT

We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent.


Subject(s)
Algorithms , Models, Chemical , Pyrones/chemistry , Quantum Theory , Computer Simulation , Methanol/chemistry , Protons , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL