Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Int J Environ Health Res ; 32(3): 565-578, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32615777

ABSTRACT

Household air pollution is a leading risk factor for morbidity and premature mortality. Numerous cookstoves have been developed to reduce household air pollution, but it is unclear whether such cookstoves meaningfully improve health. In a controlled exposure study with a crossover design, we assessed the effect of pollution emitted from multiple cookstoves on acute differences in blood lipids and inflammatory biomarkers. Participants (n = 48) were assigned to treatment sequences of exposure to air pollution emitted from five cookstoves and a filtered-air control. Blood lipids and inflammatory biomarkers were measured before and 0, 3, and 24 hours after treatments. Many of the measured outcomes had inconsistent results. However, compared to control, intercellular adhesion molecule-1 was higher 3 hours after all treatments, and C-reactive protein and serum amyloid-A were higher 24 hours after the highest treatment. Our results suggest that short-term exposure to cookstove air pollution can increase inflammatory biomarkers within 24 hours.


Subject(s)
Air Pollution, Indoor , Air Pollution , Air Pollution, Indoor/analysis , Biomarkers , Cooking , Humans , Lipids
2.
Environ Res ; 194: 110631, 2021 03.
Article in English | MEDLINE | ID: mdl-33345898

ABSTRACT

BACKGROUND: Knowledge of the role of melatonin, xenograft experiments, and epidemiological studies suggests that exposure to light at night (LAN) may disturb circadian rhythms, possibly increasing the risk of developing breast cancer. OBJECTIVES: We examined the association between residential outdoor LAN and the incidence of breast cancer: overall and subtypes classified by estrogen (ER) and progesterone (PR) receptor status. METHODS: We used data on 16,941 nurses from the Danish Nurse Cohort who were followed-up from the cohort baseline in 1993 or 1999 through 2012 in the Danish Cancer Registry for breast cancer incidence and the Danish Breast Cancer Cooperative Group for breast cancer ER and PR status. LAN exposure data were obtained from the U.S. Defense Meteorological Satellite Program (DMSP) available for 1996, 1999, 2000, 2003, 2004, 2006, and 2010 in nW/cm2/sr unit, and assigned to the study participants' residence addresses during the follow-up. Time-varying Cox regression models were used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between LAN and breast cancer, adjusting for individual characteristics, road traffic noise, and air pollution. RESULTS: Of 16,941 nurses, 745 developed breast cancer in total during 320,289 person-years of follow-up. We found no association between exposure to LAN and overall breast cancer. In the fully adjusted models, HRs for the highest (65.8-446.4 nW/cm2/sr) and medium (22.0-65.7 nW/cm2/sr) LAN tertiles were 0.97 (95% CI: 0.77, 1.23) and 1.09 (95% CI: 0.90, 1.31), respectively, compared to the lowest tertile of LAN exposure (0-21.9 nW/cm2/sr). We found a suggestive association between LAN and ER-breast cancer. CONCLUSION: This large cohort study of Danish female nurses suggests weak evidence of the association between LAN and breast cancer incidence.


Subject(s)
Breast Neoplasms , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Circadian Rhythm , Cohort Studies , Denmark/epidemiology , Female , Humans , Incidence , Light , Risk Factors
3.
Environ Health ; 20(1): 115, 2021 11 06.
Article in English | MEDLINE | ID: mdl-34740347

ABSTRACT

BACKGROUND: Road traffic noise has been linked to increased risk of ischemic heart disease, yet evidence on stroke shows mixed results. We examine the association between long-term exposure to road traffic noise and incidence of stroke, overall and by subtype (ischemic or hemorrhagic), after adjustment for air pollution. METHODS: Twenty-five thousand six hundred and sixty female nurses from the Danish Nurse Cohort recruited in 1993 or 1999 were followed for stroke-related first-ever hospital contact until December 31st, 2014. Full residential address histories since 1970 were obtained and annual means of road traffic noise (Lden [dB]) and air pollutants (particulate matter with diameter < 2.5 µm and < 10 µm [PM2.5 and PM10], nitrogen dioxide [NO2], nitrogen oxides [NOx]) were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals [CI]) for the associations of one-, three-, and 23-year running means of Lden preceding stroke (all, ischemic or hemorrhagic), adjusting for stroke risk factors and air pollutants. The World Health Organization and the Danish government's maximum exposure recommendations of 53 and 58 dB, respectively, were explored as potential Lden thresholds. RESULTS: Of 25,660 nurses, 1237 developed their first stroke (1089 ischemic, 148 hemorrhagic) during 16 years mean follow-up. For associations between a 1-year mean of Lden and overall stroke incidence, the estimated HR (95% CI) in the fully adjusted model was 1.06 (0.98-1.14) per 10 dB, which attenuated to 1.01 (0.93-1.09) and 1.00 (0.91-1.09) in models further adjusted for PM2.5 or NO2, respectively. Associations for other exposure periods or separately for ischemic or hemorrhagic stroke were similar. There was no evidence of a threshold association between Lden and stroke. CONCLUSIONS: Long-term exposure to road traffic noise was suggestively positively associated with the risk of overall stroke, although not after adjusting for air pollution.


Subject(s)
Environmental Exposure , Noise, Transportation , Stroke , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , Humans , Incidence , Noise, Transportation/adverse effects , Noise, Transportation/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/toxicity , Stroke/epidemiology
4.
Environ Res ; 180: 108831, 2020 01.
Article in English | MEDLINE | ID: mdl-31648072

ABSTRACT

Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-h controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 µg/m3, liquefied petroleum gas = 10 µg/m3, gasifier = 35 µg/m3, fan rocket = 100 µg/m3, rocket elbow = 250 µg/m3, three stone fire = 500 µg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 h). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 h after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: -0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: -0.8, 2.1) 24 h after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 h). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 h after 2-h controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.


Subject(s)
Air Pollution, Indoor , Air Pollution , Pulse Wave Analysis , Smoke , Adult , Blood Pressure , Cooking , Female , Humans , Male , Smoke/adverse effects , Volunteers , Young Adult
5.
Inhal Toxicol ; 32(3): 115-123, 2020 02.
Article in English | MEDLINE | ID: mdl-32297528

ABSTRACT

Background: Exposure to household air pollution generated as a result of cooking and heating is a leading contributor to global disease. The effects of cookstove-generated air pollution on adult lung function, however, remain uncertain.Objectives: We investigated acute responses in lung function following controlled exposures to cookstove-generated air pollution.Methods: We recruited 48 healthy adult volunteers to undergo six two-hour treatments: a filtered-air control and emissions from five different stoves with fine particulate matter (PM2.5) targets from 10 to 500 µg/m3. Spirometry was conducted prior to exposure and immediately, and three and 24 h post-exposure. Mixed-effect models were used to estimate differences in post-exposure lung function for stove treatments versus control.Results: Immediately post-exposure, lung function was lower compared to the control for the three highest PM2.5-level stoves. The largest differences were for the fan rocket stove (target 250 µg/m3; forced vital capacity (FVC): -60 mL, 95% confidence interval (95% CI) -135, 15; forced expiratory volume (FEV1): -51 mL, 95% CI -117, 16; mid-expiratory flow (FEF25-75): -116 mL/s, 95% CI -239, 8). At 3 h post-exposure, lung function was lower compared to the control for all stove treatments; effects were of similar magnitude for all stoves. At 24 h post-exposure, results were consistent with a null association for FVC and FEV1; FEF25-75 was lower relative to the control for the gasifier, fan rocket, and three stone fire.Conclusions: Patterns suggesting short-term decreases in lung function follow from exposure to cookstove air pollution even for stove exposures with low PM2.5 levels.


Subject(s)
Air Pollution, Indoor/adverse effects , Cooking , Household Articles , Lung/physiopathology , Smoke/adverse effects , Adult , Forced Expiratory Volume , Humans , Maximal Midexpiratory Flow Rate , Spirometry , Vital Capacity , Young Adult
6.
Environ Res ; 173: 387-396, 2019 06.
Article in English | MEDLINE | ID: mdl-30954912

ABSTRACT

AIM: To assess the main and interaction effects of black carbon and physical activity on arterial blood pressure in a healthy adult population from three European cities using objective personal measurements over short-term (hours and days) and long-term exposure. METHODS: A panel study of 122 healthy adults was performed in three European cities (Antwerp, Barcelona, and London). In 3 seasons between March 2015 and March 2016, each participant wore sensors for one week to objectively measure their exposure to black carbon and monitor their physical activity continuously. Blood pressure was assessed three times during the week: at the beginning (day 0), in the middle (day 4), and at the end (day 7). Associations of black carbon and physical activity with blood pressure and their interactions were investigated with linear regression models and multiplicative interaction terms, adjusting for all the potential confounders. RESULTS: In multiple exposure models, we did not see any effects of black carbon on blood pressure but did see effects on systolic blood pressure of moderate-to-vigorous physical activity effect that were statistically significant from 1 h to 8 h after exposure and for long-term exposure. For a 1METhour increase of moderate-to-vigorous physical activity, the difference in the expected mean systolic blood pressure varied from -1.46 mmHg (95%CI -2.11, -0.80) for 1 h mean exposure, to -0.29 mmHg (95%CI -0.55, -0.03) for 8 h mean exposure, and -0.05 mmHg (95%CI -0.09, -0.00) for long-term exposure. There were little to no interaction effects. CONCLUSIONS: Results from this study provide evidence that short-term and long-term exposure to moderate-to-vigorous physical activity is associated with a decrease in systolic blood pressure levels. We did not find evidence for a consistent main effect of black carbon on blood pressure, nor any interaction between black carbon and physical activity levels.


Subject(s)
Air Pollutants , Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Exercise , Adult , Blood Pressure , Cities , Humans , London , Particulate Matter
7.
J Med Internet Res ; 21(5): e11492, 2019 03 09.
Article in English | MEDLINE | ID: mdl-31066715

ABSTRACT

BACKGROUND: Sufficient sample size and minimal sample bias are core requirements for empirical data analyses. Combining opportunistic recruitment with a Web-based survey and data-collection platform yields new benefits over traditional recruitment approaches. OBJECTIVE: This paper aims to report the success of different recruitment methods and obtain data on participants' characteristics, participation behavior, recruitment rates, and representativeness of the sample. METHODS: A longitudinal, Web-based survey was implemented as part of the European PASTA (Physical Activity through Sustainable Transport Approaches) project, between November 2014 and December 2016. During this period, participants were recruited from 7 European cities on a rolling basis. A standardized guide on recruitment strategy was developed for all cities, to reach a sufficient number of adult participants. To make use of the strengths and minimize weakness, a combination of different opportunistic recruitment methods was applied. In addition, the random sampling approach was applied in the city of Örebro. To reduce the attrition rate and improve real-time monitoring, the Web-based platform featured a participant's and a researchers' user interface and dashboard. RESULTS: Overall, 10,691 participants were recruited; most people found out about the survey through their workplace or employer (2300/10691, 21.51%), outreach promotion (2219/10691, 20.76%), and social media (1859/10691, 17.39%). The average number of questionnaires filled in per participant varied significantly between the cities (P<.001), with the highest number in Zurich (11.0, SE 0.33) and the lowest in Örebro (4.8, SE 0.17). Collaboration with local organizations, the use of Facebook and mailing lists, and direct street recruitment were the most effective approaches in reaching a high share of participants (P<.001). Considering the invested working hours, Facebook was one of the most time-efficient methods. Compared with the cities' census data, the composition of study participants was broadly representative in terms of gender distribution; however, the study included younger and better-educated participants. CONCLUSIONS: We observed that offering a mixed recruitment approach was highly effective in achieving a high participation rate. The highest attrition rate and the lowest average number of questionnaires filled in per participant were observed in Örebro, which also recruited participants through random sampling. These findings suggest that people who are more interested in the topic are more willing to participate and stay in a survey than those who are selected randomly and may not have a strong connection to the research topic. Although direct face-to-face contacts were very effective with respect to the number of recruited participants, recruiting people through social media was not only effective but also very time efficient. The collected data are based on one of the largest recruited longitudinal samples with a common recruitment strategy in different European cities.


Subject(s)
Exercise/psychology , Social Media/trends , Adult , Europe , Female , Humans , Internet , Longitudinal Studies , Male , Middle Aged , Research Design , Surveys and Questionnaires
8.
Environ Sci Technol ; 51(3): 1859-1867, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28080048

ABSTRACT

Physical activity and ventilation rates have an effect on an individual's dose and may be important to consider in exposure-response relationships; however, these factors are often ignored in environmental epidemiology studies. The aim of this study was to evaluate methods of estimating the inhaled dose of air pollution and understand variability in the absence of a true gold standard metric. Five types of methods were identified: (1) methods using (physical) activity types, (2) methods based on energy expenditure, METs (metabolic equivalents of task), and oxygen consumption, (3) methods based on heart rate or (4) breathing rate, and (5) methods that combine heart and breathing rate. Methods were compared using a real-life data set of 122 adults who wore devices to track movement, black carbon air pollution, and physiological health markers for 3 weeks in three European cities. Different methods for estimating minute ventilation performed well in relative terms with high correlations among different methods, but in absolute terms, ignoring increased ventilation during day-to-day activities could lead to an underestimation of the daily dose by a factor of 0.08-1.78. There is no single best method, and a multitude of methods are currently being used to approximate the dose. The choice of a suitable method for determining the dose in future studies will depend on both the size and the objectives of the study.


Subject(s)
Air Pollutants , Environmental Monitoring/instrumentation , Vehicle Emissions , Automobiles , Humans
9.
Environ Res ; 158: 286-294, 2017 10.
Article in English | MEDLINE | ID: mdl-28667855

ABSTRACT

Low cost, personal air pollution sensors may reduce exposure measurement errors in epidemiological investigations and contribute to citizen science initiatives. Here we assess the validity of a low cost personal air pollution sensor. Study participants were drawn from two ongoing epidemiological projects in Barcelona, Spain. Participants repeatedly wore the pollution sensor - which measured carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). We also compared personal sensor measurements to those from more expensive instruments. Our personal sensors had moderate to high correlations with government monitors with averaging times of 1-h and 30-min epochs (r ~ 0.38-0.8) for NO and CO, but had low to moderate correlations with NO2 (~0.04-0.67). Correlations between the personal sensors and more expensive research instruments were higher than with the government monitors. The sensors were able to detect high and low air pollution levels in agreement with expectations (e.g., high levels on or near busy roadways and lower levels in background residential areas and parks). Our findings suggest that the low cost, personal sensors have potential to reduce exposure measurement error in epidemiological studies and provide valid data for citizen science studies.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/instrumentation , Carbon Monoxide/analysis , Environmental Exposure , Humans , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Spain
10.
Prev Med ; 76: 103-14, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25900805

ABSTRACT

OBJECTIVE: Walking and cycling for transportation (i.e. active transportation, AT), provide substantial health benefits from increased physical activity (PA). However, risks of injury from exposure to motorized traffic and their emissions (i.e. air pollution) exist. The objective was to systematically review studies conducting health impact assessment (HIA) of a mode shift to AT on grounds of associated health benefits and risks. METHODS: Systematic database searches of MEDLINE, Web of Science and Transportation Research International Documentation were performed by two independent researchers, augmented by bibliographic review, internet searches and expert consultation to identify peer-reviewed studies from inception to December 2014. RESULTS: Thirty studies were included, originating predominantly from Europe, but also the United States, Australia and New Zealand. They compromised of mostly HIA approaches of comparative risk assessment and cost-benefit analysis. Estimated health benefit-risk or benefit-cost ratios of a mode shift to AT ranged between -2 and 360 (median=9). Effects of increased PA contributed the most to estimated health benefits, which strongly outweighed detrimental effects of traffic incidents and air pollution exposure on health. CONCLUSION: Despite different HIA methodologies being applied with distinctive assumptions on key parameters, AT can provide substantial net health benefits, irrespective of geographical context.


Subject(s)
Bicycling , Health Impact Assessment , Transportation/methods , Walking , Exercise , Female , Humans , Male , Risk Assessment
11.
BMC Public Health ; 15: 1126, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26577129

ABSTRACT

BACKGROUND: Physical inactivity is one of the leading risk factors for non-communicable diseases, yet many are not sufficiently active. The Physical Activity through Sustainable Transport Approaches (PASTA) study aims to better understand active mobility (walking and cycling for transport solely or in combination with public transport) as an innovative approach to integrate physical activity into individuals' everyday lives. The PASTA study will collect data of multiple cities in a longitudinal cohort design to study correlates of active mobility, its effect on overall physical activity, crash risk and exposure to traffic-related air pollution. METHODS/DESIGN: A set of online questionnaires incorporating gold standard approaches from the physical activity and transport fields have been developed, piloted and are now being deployed in a longitudinal study in seven European cities (Antwerp, Barcelona, London, Oerebro, Rome, Vienna, Zurich). In total, 14000 adults are being recruited (2000 in each city). A first questionnaire collects baseline information; follow-up questionnaires sent every 13 days collect prospective data on travel behaviour, levels of physical activity and traffic safety incidents. Self-reported data will be validated with objective data in subsamples using conventional and novel methods. Accelerometers, GPS and tracking apps record routes and activity. Air pollution and physical activity are measured to study their combined effects on health biomarkers. Exposure-adjusted crash risks will be calculated for active modes, and crash location audits are performed to study the role of the built environment. Ethics committees in all seven cities have given independent approval for the study. DISCUSSION: The PASTA study collects a wealth of subjective and objective data on active mobility and physical activity. This will allow the investigation of numerous correlates of active mobility and physical activity using a data set that advances previous efforts in its richness, geographical coverage and comprehensiveness. Results will inform new health impact assessment models and support efforts to promote and facilitate active mobility in cities.


Subject(s)
Exercise , Health Promotion/organization & administration , Transportation/methods , Accelerometry , Accidents, Traffic/prevention & control , Air Pollution/prevention & control , Bicycling , Biomarkers , Health Impact Assessment , Humans , Longitudinal Studies , Pilot Projects , Prospective Studies , Research Design , Risk Factors , Surveys and Questionnaires , Time Factors , Urban Population , Walking
12.
Environ Health ; 12(1): 29, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23566176

ABSTRACT

BACKGROUND: Bicycle commuting in an urban environment of high air pollution is known to be a potential health risk, especially for susceptible individuals. While risk management strategies aimed to reduce exposure to motorised traffic emissions have been suggested, only limited studies have assessed the utility of such strategies in real-world circumstances. OBJECTIVES: The potential to lower exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by reducing proximity to motorised traffic was investigated with real-time air pollution and intermittent acute inflammatory measurements in healthy individuals using their typical higher proximity, and an alternative lower proximity, bicycle commute route. METHODS: Thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips, one each in the condition of their typical route (HIGH) and a pre-determined alternative route of lower proximity to motorised traffic (LOW); proximity being determined by the proportion of on-road cycle paths. Particle number concentration (PNC) and diameter (PD) were monitored in-commute in real-time. Acute inflammatory indices of respiratory symptoms (as a scalar of frequency from very low to very high / 1 to 5), lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and immediately and three hours post-commute. RESULTS: In the condition of LOW, compared to in the condition of HIGH, there was a significant decrease in mean PNC (1.91 x e4 ± 0.93 × e4 ppcc vs. 2.95 × e4 ± 1.50 × e4 ppcc; p ≤ 0.001), and the mean frequency of in-commute offensive odour detection (2.1 vs. 2.8; p = 0.019), dust and soot observation (1.7 vs. 2.3; p = 0.038) and nasopharyngeal irritation (1.5 vs. 1.9; p = 0.007). There were no significant differences between LOW and HIGH in the commute distance and duration (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 min, respectively), or other indices of acute airway inflammation. CONCLUSIONS: Exposure to PNC and offensive odour, and nasopharyngeal irritation, can be significantly lowered when utilising a route of lower proximity to motorised traffic whilst bicycle commuting, without significantly affecting commute distance or duration. This may bring health benefits for both healthy and susceptible individuals.


Subject(s)
Bicycling , Environmental Exposure/prevention & control , Pneumonia/prevention & control , Transportation , Adult , Air Pollutants/analysis , Cities , Environmental Exposure/analysis , Female , Humans , Irritants/analysis , Male , Middle Aged , Odorants , Particulate Matter/analysis , Peak Expiratory Flow Rate , Vehicle Emissions/analysis
13.
Sci Total Environ ; 820: 153057, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35031374

ABSTRACT

BACKGROUND: Long-term road traffic noise exposure is linked to cardio-metabolic disease morbidity, whereas evidence on mortality remains limited. OBJECTIVES: We investigated association of long-term exposure to road traffic noise with all-cause and cause-specific mortality. METHODS: We linked 22,858 females from the Danish Nurse Cohort (DNC), recruited into the Danish Register of Causes of Death up to 2014. Road traffic noise levels since 1970 were modelled by Nord2000 as the annual mean of a weighted 24 h average (Lden). Cox regression models examined the associations between Lden (5-year and 23-year means) and all-cause and cause-specific mortalities, adjusting for lifestyle and exposure to PM2.5 (particulate matter with diameter < 2.5 µm) and NO2 (nitrogen dioxide). RESULTS: During follow-up (mean 17.4 years), 3902 nurses died: 1622 from cancer, 922 from CVDs (289 from stroke), 338 from respiratory diseases (186 from chronic obstructive pulmonary disease, 114 from lower respiratory tract infections [ALRIs]), 234 from dementia, 95 from psychiatric disorders, and 79 from diabetes. Hazard ratios (95% confidence intervals) for all-cause mortality from fully-adjusted models were 1.06 (1.01, 1.11) and 1.09 (1.03, 1.15) per 10 dB of 5-year and 23-year mean Lden, respectively, which attenuated slightly in our main model (fully-adjusted plus PM2.5: 1.04 [1.00, 1.10]; 1.08 [1.02, 1.13]). Main model estimates suggested the strongest associations between 5-year mean Lden and diabetes (1.14: 0.81, 1.61), ALRIs (1.13: 0.84, 1.54), dementia (1.12: 0.90, 1.38), and stroke (1.10: 0.91, 1.31), whereas associations with 23-year mean Lden were suggested for respiratory diseases (1.15: 0.95, 1.39), psychiatric disorders (1.11: 0.78, 1.59), and all cancers (1.08: 0.99, 1.17). DISCUSSION: Among the female nurses from the DNC, we observed that long-term exposure to road traffic noise led to premature mortality, independently of air pollution, and its adverse effects may extend well beyond those on the cardio-metabolic system to include respiratory diseases, cancer, neurodegenerative and psychiatric disorders.


Subject(s)
Environmental Exposure , Noise, Transportation , Cause of Death , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , Humans , Noise, Transportation/statistics & numerical data
14.
Environ Int ; 164: 107241, 2022 06.
Article in English | MEDLINE | ID: mdl-35544998

ABSTRACT

BACKGROUND: The association between long-term exposure to air pollution and mortality from cardiorespiratory diseases is well established, yet the evidence for other diseases remains limited. OBJECTIVES: To examine the associations of long-term exposure to air pollution with mortality from diabetes, dementia, psychiatric disorders, chronic kidney disease (CKD), asthma, acute lower respiratory infection (ALRI), as well as mortality from all-natural and cardiorespiratory causes in the Danish nationwide administrative cohort. METHODS: We followed all residents aged ≥ 30 years (3,083,227) in Denmark from 1 January 2000 until 31 December 2017. Annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (warm season) were estimated using European-wide hybrid land-use regression models (100 m × 100 m) and assigned to baseline residential addresses. We used Cox proportional hazard models to evaluate the association between air pollution and mortality, accounting for demographic and socioeconomic factors. We additionally applied indirect adjustment for smoking and body mass index (BMI). RESULTS: During 47,023,454 person-years of follow-up, 803,881 people died from natural causes. Long-term exposure to PM2.5 (mean: 12.4 µg/m3), NO2 (20.3 µg/m3), and/or BC (1.0 × 10-5/m) was statistically significantly associated with all studied mortality outcomes except CKD. A 5 µg/m3 increase in PM2.5 was associated with higher mortality from all-natural causes (hazard ratio 1.11; 95% confidence interval 1.09-1.13), cardiovascular disease (1.09; 1.07-1.12), respiratory disease (1.11; 1.07-1.15), lung cancer (1.19; 1.15-1.24), diabetes (1.10; 1.04-1.16), dementia (1.05; 1.00-1.10), psychiatric disorders (1.38; 1.27-1.50), asthma (1.13; 0.94-1.36), and ALRI (1.14; 1.09-1.20). Associations with long-term exposure to ozone (mean: 80.2 µg/m3) were generally negative but became significantly positive for several endpoints in two-pollutant models. Generally, associations were attenuated but remained significant after indirect adjustment for smoking and BMI. CONCLUSION: Long-term exposure to PM2.5, NO2, and/or BC in Denmark were associated with mortality beyond cardiorespiratory diseases, including diabetes, dementia, psychiatric disorders, asthma, and ALRI.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Dementia , Lung Neoplasms , Ozone , Renal Insufficiency, Chronic , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Denmark/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Nitrogen Dioxide , Particulate Matter/adverse effects , Particulate Matter/analysis , Soot
15.
Environ Int ; 170: 107581, 2022 12.
Article in English | MEDLINE | ID: mdl-36244228

ABSTRACT

Ambient air pollution is an established risk factor for premature mortality from chronic cardiovascular, respiratory and metabolic diseases, while evidence on neurodegenerative diseases and psychiatric disorders remains limited. We examined the association between long-term exposure to air pollution and mortality from dementia, psychiatric disorders, and suicide in seven European cohorts. Within the multicenter project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven European cohorts from six countries. Based on the residential addresses, annual mean levels of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), ozone (O3), and 8 PM2.5 components were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and mortality from dementia, psychiatric disorders, and suicide. Of 271,720 participants, 900 died from dementia, 241 from psychiatric disorders, and 164 from suicide, during a mean follow-up of 19.7 years. In fully adjusted models, we observed positive associations of NO2 (hazard ratio [HR] = 1.38; 95 % confidence interval [CI]: 1.13, 1.70 per 10 µg/m3), PM2.5 (HR = 1.29; 95 % CI: 0.98, 1.71 per 5 µg/m3), and BC (HR = 1.37; 95 % CI: 1.11, 1.69 per 0.5 × 10-5/m) with psychiatric disorders mortality, as well as with suicide (NO2: HR = 1.13 [95 % CI: 0.92, 1.38]; PM2.5: HR = 1.19 [95 % CI: 0.76, 1.87]; BC: HR = 1.08 [95 % CI: 0.87, 1.35]), and no association with dementia mortality. We did not detect any positive associations of O3 and 8 PM2.5 components with any of the three mortality outcomes. Long-term exposure to NO2, PM2.5, and BC may lead to premature mortality from psychiatric disorders and suicide.


Subject(s)
Air Pollution , Dementia , Suicide , Humans , Europe/epidemiology , Air Pollution/adverse effects
16.
Environ Int ; 146: 106254, 2021 01.
Article in English | MEDLINE | ID: mdl-33221594

ABSTRACT

BACKGROUND: Exposure to household air pollution from solid fuel combustion for cooking and heating is an important risk factor for premature death and disability worldwide. Current evidence supports an association of ambient air pollution with cardiovascular disease but is limited for household air pollution and for cardiac function. Controlled exposure studies can complement evidence provided by field studies. OBJECTIVES: To investigate effects of short-term, controlled exposures to emissions from five cookstoves on measures of cardiac function. METHODS: Forty-eight healthy adults (46% female; 20-36 years) participated in six, 2-h exposures ('treatments'), including emissions from five cookstoves and a filtered-air control. Target fine particulate matter (PM2.5) exposure-concentrations per treatment were: control, 0 µg/m3; liquefied petroleum gas, 10 µg/m3; gasifier, 35 µg/m3; fan rocket, 100 µg/m3; rocket elbow, 250 µg/m3; and three stone fire, 500 µg/m3. Participants were treated in a set (pre-randomized) sequence as groups of 4 to minimize order bias and time-varying confounders. Heart rate variability (HRV) and cardiac repolarization metrics were calculated as 5-min means immediately and at 3 h following treatment, for analysis in linear mixed-effects models comparing cookstove to control. RESULTS: Short-term differences in SDNN (standard deviation of duration of all NN intervals) and VLF (very-low frequency power) existed for several cookstoves compared to control. While all cookstoves compared to control followed a similar trend for SDNN, the greatest effect was seen immediately following three stone fire (ß = -0.13 ms {%}; 95% confidence interval = -0.22, -0.03%), which reversed in direction at 3 h (0.03%; -0.06, 0.13%). VLF results were similar in direction and timing to SDNN; however, other HRV or cardiac repolarization results were not similar to those for SDNN. DISCUSSION: We observed some evidence of short-term, effects on HRV immediately following cookstove treatments compared to control. Our results suggest that cookstoves with lower PM2.5 emissions are potentially capable of affecting cardiac function, similar to stoves emitting higher PM2.5 emissions.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Household Articles , Adult , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Cooking , Female , Humans , Male , Particulate Matter/analysis , Smoke/adverse effects , Volunteers
17.
J Am Heart Assoc ; 10(20): e021436, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34612059

ABSTRACT

Background We examined the association of long-term exposure to air pollution and road traffic noise with incident heart failure (HF). Methods And Results Using data on female nurses from the Danish Nurse Cohort (aged >44 years), we investigated associations between 3-year mean exposures to air pollution and road traffic noise and incident HF using Cox regression models, adjusting for relevant confounders. Incidence of HF was defined as the first hospital contact (inpatient, outpatient, or emergency) between cohort baseline (1993 or 1999) and December 31, 2014, based on the Danish National Patient Register. Annual mean levels of particulate matter with a diameter <2.5 µm since 1990 and NO2 and road traffic noise since 1970 were estimated at participants' residences. Of the 22 189 nurses, 484 developed HF. We detected associations with all 3 pollutants, with hazard ratios (HRs) of 1.17 (95% CI, 1.01-1.36), 1.10 (95% CI, 0.99-1.22), and 1.12 (95% CI, 0.99-1.26) per increase of 5.1 µg/m3 in particulate matter with a diameter <2.5 µm, 8.6 µg/m3 in NO2, and 9.3 dB in road traffic noise, respectively. We observed an enhanced risk of HF incidence for those exposed to high levels of the 3 pollutants; however, the effect modification of coexposure was not statistically significant. Former smokers and nurses with hypertension showed the strongest associations with particulate matter with a diameter <2.5 µm (Peffect modification<0.05). Conclusions We found that long-term exposures to air pollution and road traffic noise were independently associated with HF.


Subject(s)
Air Pollution , Environmental Exposure , Heart Failure , Noise, Transportation , Air Pollution/adverse effects , Cohort Studies , Denmark/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Female , Heart Failure/epidemiology , Humans , Incidence , Middle Aged , Noise, Transportation/adverse effects , Nurses/statistics & numerical data
18.
Environ Health Perspect ; 129(8): 87002, 2021 08.
Article in English | MEDLINE | ID: mdl-34338552

ABSTRACT

BACKGROUND: Associations between long-term exposure to air pollution and road traffic noise have been established for ischemic heart disease, but findings have been mixed for atrial fibrillation (AF). OBJECTIVES: The goal of the study was to examine associations of long-term exposure to road traffic noise and air pollution with AF. METHODS: Time-varying Cox regression models were used to estimate associations of 1-, 3-, and 23-y mean road traffic noise and air pollution exposures with AF incidence in 23,528 women enrolled in the Danish Nurse Cohort (age >44y at baseline in 1993 or 1999). AF diagnoses were ascertained via the Danish National Patient Register. Annual mean weighted 24-h average road traffic noise levels (Lden) at the nurses' residences, since 1970, were estimated using the Nord2000 model, and annual mean levels of particulate matter with a diameter <2.5µm (PM2.5) and nitrogen dioxide (NO2) were estimated using the DEHM/UBM/AirGIS model. RESULTS: Of 23,528 nurses with no prior AF diagnosis at the cohort baseline, 1,522 developed AF during follow-up. In a fully adjusted model (including PM2.5), the estimated risk of AF was 18% higher [hazard ratio (HR); 95% confidence interval (CI): 1.18; 1.02, 1.36] in nurses with residential 3-y mean Lden levels >58 dB vs. <48 dB, with similar findings for 1-y mean exposures. A 3.9-µg/m3 increase in 3-y mean PM2.5 was associated with incident AF before and after adjustment for concurrent exposure to road traffic noise (HR 1.09; 95% CI: 1.00, 1.20 and 1.08; 95% CI: 0.97, 1.19, respectively). Associations with 1-y mean PM2.5 exposures were positive but closer to the null and not significant. Associations with NO2 were null for all time periods before and after adjustment for road traffic noise and inverse when adjusted for concurrent PM2.5. CONCLUSION: Our analysis of prospective data from a cohort of Danish female nurses followed for up to 14 y provided suggestive evidence of independent associations between incident AF and 1- and 3-y exposures to road traffic noise and PM2.5. https://doi.org/10.1289/EHP8090.


Subject(s)
Air Pollutants , Air Pollution , Atrial Fibrillation , Noise, Transportation , Air Pollutants/analysis , Air Pollution/analysis , Atrial Fibrillation/epidemiology , Denmark/epidemiology , Environmental Exposure/analysis , Female , Humans , Noise, Transportation/adverse effects , Particulate Matter/analysis , Prospective Studies
19.
Environ Epidemiol ; 5(3): e148, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33912785

ABSTRACT

BACKGROUND: Evidence of nonauditory health effects of road traffic noise exposure is growing. This prospective cohort study aimed to estimate the association between long-term exposure to road traffic noise above a threshold and incident myocardial infarction (MI) in Denmark. METHODS: In the Danish Nurse Cohort study, we used data of 22,378 women, at recruitment in 1993 and 1999, who reported information on MI risk factors. The participants' first hospital contact or out-of-hospital death due to MI were followed-up until 2014. We investigated a relationship between residential exposures to road traffic noise levels (Lden) up to 23 years and incident MI (overall, nonfatal, and fatal) using time-varying Cox regression models adjusting for potential confounders and air pollutants. We estimated thresholds of road traffic noise (53, 56, and 58 dB) associated with incident MI in a piece-wise linear regression model. RESULTS: Of the 22,378 participants, 633 developed MI, 502 of which were nonfatal. We observed a non-linear relationship between the 23-year running mean of Lden and incident MI with a threshold level of 56 dB, above which hazard ratios (95% confidence intervals) were 1.30 (0.97, 1.75) for overall and 1.46 (1.05, 2.03) for nonfatal MI per 10 dB. The association with nonfatal MI attenuated slightly to 1.34 (0.95, 1.90) after adjustment for fine particles. CONCLUSIONS: We found that long-term exposure to road traffic noise above 56 dB may increase the risk of MI. The study findings suggest that road traffic noise above 56 dB may need regulation in addition to the regulation of ambient pollutants.

20.
Accid Anal Prev ; 141: 105540, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32304868

ABSTRACT

Increased cycling uptake can improve population health, but barriers include real and perceived risks. Crash risk factors are important to understand in order to improve safety and increase cycling uptake. Many studies of cycling crash risk are based on combining diverse sources of crash and exposure data, such as police databases (crashes) and travel surveys (exposure), based on shared geography and time. When conflating crash and exposure data from different sources, the risk factors that can be quantified are only those variables common to both datasets, which tend to be limited to geography (e.g. countries, provinces, municipalities) and a few general road user characteristics (e.g. gender and age strata). The Physical Activity through Sustainable Transport Approaches (PASTA) project was a prospective cohort study that collected both crash and exposure data from seven European cities (Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zürich). The goal of this research was to use data from the PASTA project to quantify exposure-adjusted crash rates and model adjusted crash risk factors, including detailed sociodemographic characteristics, attitudes about transportation, neighbourhood built environment features and location by city. We used negative binomial regression to model the influence of risk factors independent of exposure. Of the 4,180 cyclists, 10.2 % reported 535 crashes. We found that overall crash rates were 6.7 times higher in London, the city with the highest crash rate, relative to Örebro, the city with the lowest rate. Differences in overall crash rates between cities are driven largely by crashes that did not require medical treatment and that involved motor-vehicles. In a parsimonious crash risk model, we found higher crash risks for less frequent cyclists, men, those who perceive cycling to not be well regarded in their neighbourhood, and those who live in areas of very high building density. Longitudinal collection of crash and exposure data can provide important insights into individual differences in crash risk. Substantial differences in crash risks between cities, neighbourhoods and population groups suggest there is great potential for improvement in cycling safety.

SELECTION OF CITATIONS
SEARCH DETAIL