Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Nature ; 606(7912): 113-119, 2022 06.
Article in English | MEDLINE | ID: mdl-35585233

ABSTRACT

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Subject(s)
Avena , Edible Grain , Genome, Plant , Avena/genetics , Diploidy , Edible Grain/genetics , Genome, Plant/genetics , Mosaicism , Plant Breeding , Tetraploidy
2.
Crit Rev Biotechnol ; : 1-16, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38035669

ABSTRACT

Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.

3.
Proc Natl Acad Sci U S A ; 117(37): 23165-23173, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32868448

ABSTRACT

To engineer Mo-dependent nitrogenase function in plants, expression of the structural proteins NifD and NifK will be an absolute requirement. Although mitochondria have been established as a suitable eukaryotic environment for biosynthesis of oxygen-sensitive enzymes such as NifH, expression of NifD in this organelle has proven difficult due to cryptic NifD degradation. Here, we describe a solution to this problem. Using molecular and proteomic methods, we found NifD degradation to be a consequence of mitochondrial endoprotease activity at a specific motif within NifD. Focusing on this functionally sensitive region, we designed NifD variants comprising between one and three amino acid substitutions and distinguished several that were resistant to degradation when expressed in both plant and yeast mitochondria. Nitrogenase activity assays of these resistant variants in Escherichia coli identified a subset that retained function, including a single amino acid variant (Y100Q). We found that other naturally occurring NifD proteins containing alternate amino acids at the Y100 position were also less susceptible to degradation. The Y100Q variant also enabled expression of a NifD(Y100Q)-linker-NifK translational polyprotein in plant mitochondria, confirmed by identification of the polyprotein in the soluble fraction of plant extracts. The NifD(Y100Q)-linker-NifK retained function in bacterial nitrogenase assays, demonstrating that this polyprotein permits expression of NifD and NifK in a defined stoichiometry supportive of activity. Our results exemplify how protein design can overcome impediments encountered when expressing synthetic proteins in novel environments. Specifically, these findings outline our progress toward the assembly of the catalytic unit of nitrogenase within mitochondria.


Subject(s)
Genes, Bacterial/genetics , Mitochondria/genetics , Mitochondria/physiology , Plant Proteins/genetics , Plants/genetics , Amino Acid Substitution/genetics , Escherichia coli/genetics , Nitrogen Fixation/genetics , Nitrogenase/genetics , Polyproteins/genetics , Proteomics/instrumentation
4.
Plant J ; 108(2): 378-393, 2021 10.
Article in English | MEDLINE | ID: mdl-34312931

ABSTRACT

Despite being of vital importance for seed establishment and grain quality, starch degradation remains poorly understood in organs such as cereal or legume seeds. In cereals, starch degradation requires the synergetic action of different isoforms of α-amylases. Ubiquitous overexpression of TaAmy2 resulted in a 2.0-437.6-fold increase of total α-amylase activity in developing leaf and harvested grains. These increases led to dramatic alterations of starch visco-properties and augmentation of soluble carbohydrate levels (mainly sucrose and α-gluco-oligosaccharide) in grain. Interestingly, the overexpression of TaAMY2 led to an absence of dormancy in ripened grain due to abscisic acid (ABA) insensitivity. Using an allosteric α-amylase inhibitor (acarbose), we demonstrated that ABA insensitivity was due to the increased soluble carbohydrate generated by the α-amylase excess. Independent from the TaAMY2 overexpression, inhibition of α-amylase during germination led to the accumulation of soluble α-gluco-oligosaccharides without affecting the first stage of germination. These findings support the hypotheses that (i) endosperm sugar may overcome ABA signalling and promote sprouting, and (ii) α-amylase may not be required for the initial stage of grain germination, an observation that questions the function of the amylolytic enzyme in the starch degradation process during germination.


Subject(s)
Germination/physiology , Seeds/metabolism , Starch/metabolism , Triticum/metabolism , alpha-Amylases/genetics , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant , Plant Dormancy/drug effects , Plant Dormancy/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Seeds/genetics , Seeds/growth & development , Starch/chemistry , Starch/genetics , Sugars/metabolism , Triticum/genetics , alpha-Amylases/metabolism
5.
Anal Chem ; 94(49): 17046-17054, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36445804

ABSTRACT

The current food safety testing system, based on laboratory-based quantification, is difficult to scale up in line with the growth in the export market and does not enable traceability through the nodes of the food supply system. Screening assays, for example, lateral flow assays (LFAs), can improve traceability but often lack the required reliability to guarantee compliance. Here, we present an alternative pipeline for secure on-site compliance testing, using allergens as a case study. The pipeline features smartphone-driven LFA quantification and an liquid chromatography-mass spectrometry (LC-MS) method enabling direct quantification of the allergens contained in the LFA. The system enables swift and objective screening and provides a control measure to verify LFA assay reliability. For the smartphone assay, 8-bit RGB and grayscale colorimetric channels were compared with 16-bit raw intensity values. The latter outperformed RGB and grayscale channels in sensitivity, repeatability, and precision, while ratiometric ambient light correction resulted in excellent robustness for light-intensity variation. Calibration curves for peanut determination using two commercial LFAs featured excellent analytical parameters (R2 = 0.97-0.99; RSD 7-1%; LOD 3-7 ppm). Gluten determination with a third commercial LFA was equally established. A prediction error of 13 ± 11% was achieved for the best performing assay. Good performance-calibration curves (R2 = 0.93-0.99) and CVs (<15%)- were observed for the analyte quantification from the LFA by LC-MS. The LOD for the LC-MS assay was 0.5 ppm, well below the LODs reported for the LFAs. This method creates a digital, fast, and secure food safety compliance testing paradigm that can benefit the industry and consumer alike.


Subject(s)
Food Hypersensitivity , Humans , Reproducibility of Results , Chromatography, Liquid/methods , Mass Spectrometry/methods , Allergens/analysis
6.
Methods ; 186: 112-118, 2021 02.
Article in English | MEDLINE | ID: mdl-32956783

ABSTRACT

Modern mass spectrometers can accurately measure thousands of compounds in complex mixtures over a given liquid chromatograph method, depending on desired outcome and method duration. This stream of analytical chemistry has wide ranging application across food, pharma, environmental, forensics, clinical and research. With consistent pressure on both the ruminant production and product industries to face new and substantial challenges, liquid chromatography-mass spectrometry (LC-MS) is an ideal tool to identify, detect and quantify markers of breeding, production and adaption to support both research and industry to overcome these challenges. Herein, we provide a description of the theoretical basis and framework for LC-MS as a rapidly developing technique and highlight its application in measuring cattle and cattle product traits through protein quantitation with specific focus on beta-casein proteoforms.


Subject(s)
Caseins/analysis , Dairying/methods , Milk/chemistry , Tandem Mass Spectrometry/methods , Animals , Cattle , Chromatography, High Pressure Liquid/methods , Female , Protein Isoforms/analysis
7.
Int J Food Sci Nutr ; 73(8): 1067-1079, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36273815

ABSTRACT

The purpose of this study was to investigate changes in the range and nutrient profile of processed alternative protein "convenience" products available in Australia from 2014 to 2021. Product data were extracted from FoodTrack™, an established database of packaged supermarket products. Eligible products were grouped into subcategories: (i) tofu products; (ii) legume products; and (iii) plant-based meats. Nutrient composition was assessed from the products' nutrition information panel. The number of alternative protein products in supermarkets more than doubled between 2014 and 2021 (+130%). On average, products were available for 2.2 years (range 1-7 years). Generally, tofu products had the highest contents of saturated fat and sodium, legume products had the highest contents of carbohydrates, sugar and fibre, and plant-based meats had the highest contents of protein and total fat (per 100 g). This study found large variation in the nutrient composition of these products, highlighting the importance of reformulation and consumer education in the future.


Subject(s)
Nutrients , Supermarkets , Nutritive Value , Australia , Meat , Food Labeling
8.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613697

ABSTRACT

Proteomics offers one of the best approaches for the functional analysis of the genome, generating detailed information that can be integrated with that obtained by other classic and omics approaches [...].


Subject(s)
Plants , Proteomics , Genome
9.
Compr Rev Food Sci Food Saf ; 21(3): 2391-2432, 2022 05.
Article in English | MEDLINE | ID: mdl-35279935

ABSTRACT

Meat quality can be affected by stress, exhaustion, feed composition, and other physical and environmental conditions. These stressors can alter the pH in postmortem muscle, leading to high pH and low-quality dark cutting (DC) beef, resulting in considerable economic loss. Moreover, the dark cutting prediction may equally provide a measure for animal welfare since it is directly related to animal stress. There are two needs to advance on-site detection of dark cutters: (1) a clear indication that biomarker (signature compounds) levels in cattle correlate with stress and DC outcome; and (2) measuring these biomarkers rapidly and accurately on-farm or the abattoir, depending on the objectives. This critical review assesses which small molecules and proteins have been identified as potential biomarkers of stress and dark cutting in cattle. We discuss the potential of promising small molecule biomarkers, including catecholamine/cortisol metabolites, lactate, succinate, inosine, glucose, and ß-hydroxybutyrate, and we identify a clear research gap for proteomic biomarker discovery in live cattle. We also explore the potential of chemical-sensing and biosensing technologies, including direct electrochemical detection improved through nanotechnology (e.g., carbon and gold nanostructures), surface-enhanced Raman spectroscopy in combination with chemometrics, and commercial hand-held devices for small molecule detection. No current strategy exists to rapidly detect predictive meat quality biomarkers due to the need to further validate biomarkers and the fact that different biosensor types are needed to optimally detect different molecules. Nonetheless, several biomarker/biosensor combinations reported herein show excellent potential to enable the measurement of DC potential in live cattle.


Subject(s)
Biosensing Techniques , Proteomics , Animals , Biomarkers/analysis , Biomarkers/metabolism , Cattle , Hydrogen-Ion Concentration , Muscle, Skeletal/chemistry
10.
Plant Cell Environ ; 44(12): 3526-3544, 2021 12.
Article in English | MEDLINE | ID: mdl-34591319

ABSTRACT

Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.


Subject(s)
Brachypodium/microbiology , Fusarium/physiology , Metabolome , Mycotoxins/metabolism , Transcriptome , Trichothecenes/metabolism , Adaptation, Biological , Brachypodium/genetics , Brachypodium/immunology , Brachypodium/metabolism , Host Microbial Interactions , Plant Immunity/physiology , Plant Roots/microbiology , Signal Transduction/immunology
11.
J Proteome Res ; 19(5): 2136-2148, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32267703

ABSTRACT

α-Amylase/trypsin inhibitors (ATIs) may have a role in nonceliac wheat sensitivity (NCWS) and celiac disease (CD), but the ATI content and diversity across a range of wheat cultivars are not well characterized. Discovery proteomics was used to detect ATIs across two wheat cultivars: Chara and Magenta. Comprehensive mapping of detected ATIs with the ATIs from the recently published wheat genome RefSeq v1.0 shows the presence of three major subclasses: monomeric (9%), dimeric (61%), and chloroform-methanol (CM) type (30%). Subsequently, the level of 18 ATI isoforms (63 peptides) grouped into four subtypes was monitored across 15 commercial wheat cultivars and the eight parental lines from a multiparent advanced-generation intercross (MAGIC) population using liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS). The ATI content of wheat cultivars Janz, Sunvale, Diamond Bird, and Longreach Scout was significantly lower than that of other wheat cultivars. The MAGIC parental cultivars Baxter and Xiaoyan 54 contain higher levels (∼115% relative to the average wheat ATI content), whereas cultivar Pastor contained the lowest levels (∼87%). Comprehensive sequence analysis, annotation, chromosomal locations, and epitope mapping enabled us to build an LC-MRM-MS method to monitor and quantify the immunostimulatory ATI proteins potentially related to NCWS, autoimmune diseases, and metabolic disorders. This provides an opportunity to select wheat cultivars with significantly lower levels of ATIs.


Subject(s)
Amylases , Trypsin Inhibitors , Bread , Enzyme Inhibitors , Plant Proteins/analysis , Trypsin , Trypsin Inhibitors/analysis , Trypsin Inhibitors/metabolism
12.
Theor Appl Genet ; 133(10): 2961-2974, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32651668

ABSTRACT

KEY MESSAGE: Catalytically active indica SSIIa allele in high amylose rice with down-regulated japonica SBEIIb can increase starch content and modify the starch structure and properties without changing its amylose content. Rice (Oryza sativa) genotypes with inactive starch synthase IIa (SSIIa) with recessive variants of starch branching enzyme IIb (SBEIIb) exhibit a range of alterations in grain phenotype, starch granule morphology, starch granule bound proteins, starch structure, and functional properties. However, the interactions between the two enzymes have not been thoroughly investigated yet. We analysed recombinant rice lines having down-regulated SBEIIb expression (SBEIIbDR) with either indica or japonica type SSIIa (SSIIaind or SSIIajap). In SBEIIbDR rice starch granules, the increased abundance of two protein bands (SSI and SSIIa) was found with eight additional protein bands not generally associated with starch granules. The amount of SSIIa was higher in SSIIaindSBEIIbDR than SSIIajapSBEIIbDR, which indicated that indica type SSIIa, possibly in the monomer form, was extensively involved in starch biosynthesis in the SBEIIbDR endosperm. Furthermore, SSIIaindSBEIIbDR grains had higher total starch content and higher starch swelling power than SSIIajapSBEIIbDR lines, but the amylopectin gelatinization temperatures and enthalpy and the apparent amylose content remained similar. In summary, this work suggests that SSIIaind can partly compensate for the alteration of starch synthesis resulting from the SBEIIb down-regulation in japonica background without reducing its amylose content. The study provides insight into the starch structural and textural improvements of high amylose starch.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/genetics , Amylose/chemistry , Oryza/genetics , Plant Proteins/genetics , Starch Synthase/genetics , Starch/chemistry , Alleles , Crosses, Genetic , Down-Regulation , Edible Grain/genetics , Endosperm/chemistry , Gene Expression Regulation, Plant , Genotype , Oryza/enzymology , Plants, Genetically Modified/enzymology
13.
Rapid Commun Mass Spectrom ; 34(9): e8723, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31922636

ABSTRACT

RATIONALE: Cytokines are cell regulatory molecules of high importance as indicators for homeostasis and pathology in many species. The current method to measure cytokines in body fluids is reagent dependent, requiring highly specific paired antibodies. METHODS: A liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS)-based approach was developed to simultaneously establish the limits of detection (LODs) and quantification (LOQs) for recombinant cytokines IL-1ß, IL-6, IFNγ and TNFα as pure standards and in bovine sera. All experimental LC/MRM-MS data are available at CSIRO Data Access Portal repository under identifier doi.org/10.25919/5de8a0232a862. RESULTS: The present method enabled LODs and LOQs as low as 1.05 and 1.12 fmol/µL in the experiment comprised of pure standards. Comparable results were obtained in the experiment where digested cytokines were mixed with pre-digested sera proteins. The intrinsic matrix effects were evident when intact cytokines were co-digested within undiluted and undigested sera decreasing the ability to detect and quantify cytokines by 10,000-fold compared with pure standards and pre-digested sera. CONCLUSIONS: The developed LC/MRM-MS method provided insights into the difficulties in detecting the target peptides when embedded in complex matrices. Nonetheless, the method may potentially be readily applied in biomarker-focused research interrogating fluids of lesser complexity such as synovial fluid, cerebrospinal fluid and tissue culture media.


Subject(s)
Cattle/blood , Cytokines/blood , Tandem Mass Spectrometry/methods , Animals , Biomarkers/blood , Chromatography, Liquid/methods , Limit of Detection , Peptides/blood
14.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053786

ABSTRACT

The success of seed germination and the successful establishment of seedlings across diverse environmental conditions depends on seed vigour, which is of both economic and ecologic importance. The smoke-derived exogenous compound karrikins (KARs) and the endogenous plant hormone strigolactone (SL) are two classes of butanolide-containing molecules that follow highly similar signalling pathways to control diverse biological activities in plants. Unravelling the precise mode-of-action of these two classes of molecules in model species has been a key research objective. However, the specific and dynamic expression of biomolecules upon stimulation by these signalling molecules remains largely unknown. Genomic and post-genomic profiling approaches have enabled mining and association studies across the vast genetic diversity and phenotypic plasticity. Here, we review the background of smoke-assisted germination and vigour and the current knowledge of how plants perceive KAR and SL signalling and initiate the crosstalk with the germination-associated hormone pathways. The recent advancement of 'multi-omics' applications are discussed in the context of KAR signalling and with relevance to their adoption for superior agronomic trait development. The remaining challenges and future opportunities for integrating multi-omics datasets associated with their application in KAR-dependent seed germination and abiotic stress tolerance are also discussed.


Subject(s)
Gene Expression Profiling , Germination/genetics , Hybrid Vigor/genetics , Plant Development/genetics , Proteomics , Seeds/genetics , Smoke , Adaptation, Biological , Crops, Agricultural , Environment , Gene Expression Regulation, Plant , Gene-Environment Interaction , Plant Growth Regulators/metabolism , Signal Transduction
15.
J Proteome Res ; 18(9): 3394-3403, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31333027

ABSTRACT

Rye, wheat, and barley contain gluten, proteins that trigger immune-mediated inflammation of the small intestine in people with celiac disease (CD). The only treatment for CD is a lifelong gluten-free diet. To be classified as gluten-free by the World Health Organization the gluten content must be below 20 mg/kg, but Australia has a more rigorous standard of no detectable gluten and not made from wheat, barley, rye, or oats. The purpose of this study was to devise an LC-MS/MS method to detect rye in food. An MS-based assay could overcome some of the limitations of immunoassays, wherein antibodies often show cross-reactivity and lack specificity due to the diversity of gluten proteins in commercial food and the homology between rye and wheat gluten isoforms. Comprehensive proteomic analysis of 20 rye cultivars originating from 12 countries enabled the identification of a panel of candidate rye-specific peptide markers. The peptide markers were assessed in 16 cereal and pseudocereal grains, and in 10 breakfast cereals and 7 snack foods. One of two spelt flours assessed was contaminated with rye at a level of 2%, and trace levels of rye were found in a breakfast cereal that should be gluten-free based on its labeled ingredients.


Subject(s)
Chromatography, Liquid , Glutens/isolation & purification , Secale/genetics , Tandem Mass Spectrometry , Australia , Avena/genetics , Celiac Disease/diet therapy , Celiac Disease/prevention & control , Edible Grain/genetics , Flour/analysis , Food Analysis , Glutens/genetics , Hordeum/genetics , Humans , Peptides/genetics , Peptides/isolation & purification , Proteomics , Triticum/genetics
16.
J Proteome Res ; 18(9): 3342-3352, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31321981

ABSTRACT

The freshwater snail Pomacea canaliculata, an invasive species of global significance, possesses a well-developed digestive system and diverse feeding mechanisms enabling the intake of a wide variety of food. The identification of glycosidases in adult snails would increase the understanding of their digestive physiology and potentially generate new opportunities to eradicate and/or control this invasive species. In this study, liquid chromatography coupled to tandem mass spectrometry was applied to define the occurrence, diversity, and origin of glycoside hydrolases along the digestive tract of P. canaliculata. A range of cellulases, hemicellulases, amylases, maltases, fucosidases, and galactosidases were identified across the digestive tract. The digestive gland and the contents of the crop and style sac yield a higher diversity of glycosidase-derived peptides. Subsequently, peptides derived from 81 glycosidases (46 proteins from the public database and 35 uniquely from the transcriptome database) that were distributed among 13 glycoside hydrolase families were selected and quantified using multiple reaction monitoring mass spectrometry. This study showed a high glycosidase abundance and diversity in the gut contents of P. canaliculata which participate in extracellular digestion of complex dietary carbohydrates. Salivary and digestive glands were the main tissues involved in their synthesis and secretion.


Subject(s)
Glycoside Hydrolases/genetics , Proteomics , Snails/genetics , Transcriptome/genetics , Animals , Chromatography, Liquid/methods , Gastrointestinal Tract/metabolism , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Introduced Species , Snails/metabolism , Tandem Mass Spectrometry/methods
17.
Adv Exp Med Biol ; 1073: 1-22, 2019.
Article in English | MEDLINE | ID: mdl-31236837

ABSTRACT

The proteome represents the total set of proteins produced by an organism or a system at a particular time or state, with proteomics being the study of the proteome. The proteome is a dynamic system wherein proteins are interconnected and serve to facilitate cellular processes in a concurrent and coordinated manner. Over the years, various biochemical and biophysical methods have been developed to elucidate the identities, structures and functions of proteins in order to understand their roles in complex biological systems. The success of proteomic approaches hinges on efficient protein extraction and sample preparation; however, these preliminary steps are often considered a bottleneck in proteomic workflows. Every biological sample is unique and complex, and sample processing needs to be tailored to the nature of the protein sample due to its vulnerability towards post-collection degradation and the complexity of its non-protein constituents. Sample pretreatment steps often employ buffers, solvents, salts and detergents that are not always compatible with the downstream analytical tools. This chapter will provide an overview of sample pretreatment techniques commonly used in conjunction with proteomics tools and discuss protein analysis methods. Such methods include the use of antibody-based techniques, separation sciences (e.g. chromatography, SDS-PAGE), detection methods (e.g. mass spectrometry) and structural techniques (e.g. NMR and X-ray crystallography).


Subject(s)
Proteome , Proteomics/methods , Antibodies/chemistry , Chromatography , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Magnetic Resonance Spectroscopy , Mass Spectrometry
18.
Molecules ; 24(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614625

ABSTRACT

Coeliac disease (CD) is an autoimmune disorder triggered by the ingestion of gluten that is associated with gastrointestinal issues, including diarrhea, abdominal pain, and malabsorption. Gluten is a general name for a class of cereal storage proteins of wheat, barley, and rye that are notably resistant to gastrointestinal digestion. After ingestion, immunogenic peptides are subsequently recognized by T cells in the gastrointestinal tract. The only treatment for CD is a life-long gluten-free diet. As such, it is critical to detect gluten in diverse food types, including those where one would not expect to find gluten. The utility of liquid chromatography-mass spectrometry (LC-MS) using cereal-specific peptide markers to detect gluten in heavily processed food types was assessed. A range of breakfast products, including breakfast cereals, breakfast bars, milk-based breakfast drinks, powdered drinks, and a savory spread, were tested. No gluten was detected by LC-MS in the food products labeled gluten-free, yet enzyme-linked immunosorbent assay (ELISA) measurement revealed inconsistencies in barley-containing products. In products containing wheat, rye, barley, and oats as labeled ingredients, gluten proteins were readily detected using discovery proteomics. Panels comprising ten cereal-specific peptide markers were analyzed by targeted proteomics, providing evidence that LC-MS could detect and differentiate gluten in complex matrices, including baked goods and milk-based products.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Food Analysis , Glutens/isolation & purification , Proteomics , Australia , Avena/chemistry , Breakfast , Chromatography, Liquid , Edible Grain/chemistry , Glutens/chemistry , Hordeum/chemistry , Humans , Mass Spectrometry , Triticum/chemistry
19.
J Proteome Res ; 17(5): 1852-1865, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29510626

ABSTRACT

Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p < 0.05) in peptides from protein precursors involved in packaging and processing (e.g., the granin family and ProSAAS) or neuron stimulation (PENK, CART, POMC, cerebellins). On their own, the transcriptome data of the precursor genes could not predict the neuropeptide profile in the exact same tissues in several cases. This provides further evidence of the importance of differential processing of the neuropeptide precursors in the pituitary before and after puberty.


Subject(s)
Hypothalamus , Neuropeptides , Pituitary Gland , Sexual Maturation , Animals , Cattle , Female , Hypothalamus/chemistry , Neuropeptides/analysis , Pituitary Gland/chemistry , Protein Processing, Post-Translational , RNA Processing, Post-Transcriptional , Transcriptome
20.
J Biol Chem ; 292(30): 12398-12411, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28536266

ABSTRACT

Seed storage proteins are both an important source of nutrition for humans and essential for seedling establishment. Interestingly, unusual napin-type 2S seed storage albumin precursors in sunflowers contain a sequence that is released as a macrocyclic peptide during post-translational processing. The mechanism by which such peptides emerge from linear precursor proteins has received increased attention; however, the structural characterization of intact precursor proteins has been limited. Here, we report the 3D NMR structure of the Helianthus annuus PawS1 (preproalbumin with sunflower trypsin inhibitor-1) and provide new insights into the processing of this remarkable dual-destiny protein. In seeds, PawS1 is matured by asparaginyl endopeptidases (AEPs) into the cyclic peptide SFTI-1 (sunflower trypsin inhibitor-1) and a heterodimeric 2S albumin. The structure of PawS1 revealed that SFTI-1 and the albumin are independently folded into well-defined domains separated by a flexible linker. PawS1 was cleaved in vitro with recombinant sunflower HaAEP1 and in situ using a sunflower seed extract in a way that resembled the expected in vivo cleavages. Recombinant HaAEP1 cleaved PawS1 at multiple positions, and in situ, its flexible linker was removed, yielding fully mature heterodimeric albumin. Liberation and cyclization of SFTI-1, however, was inefficient, suggesting that specific seed conditions or components may be required for in vivo biosynthesis of SFTI-1. In summary, this study has revealed the 3D structure of a macrocyclic precursor protein and provided important mechanistic insights into the maturation of sunflower proalbumins into an albumin and a macrocyclic peptide.


Subject(s)
Helianthus/chemistry , Peptides, Cyclic/chemistry , Prealbumin/chemistry , Peptides, Cyclic/metabolism , Prealbumin/metabolism , Protein Conformation , Protein Precursors/chemistry , Protein Precursors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL