Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Conserv Biol ; 35(2): 492-501, 2021 04.
Article in English | MEDLINE | ID: mdl-32557849

ABSTRACT

Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.


Uso de las Ciencias de la Decisión para Evaluar los Índices Globales de Biodiversidad Resumen Los índices globales de biodiversidad se usan para medir el cambio ambiental y el avance hacia los objetivos de conservación, aunque pocos han sido evaluados completamente en cuanto a su capacidad para detectar las tendencias de interés como las declinaciones de especies amenazadas o la función del ecosistema. Evaluamos cualitativamente nueve índices de uso común para dar seguimiento a la biodiversidad a escala global y regional contra cinco criterios relacionados con los objetivos, diseño, comportamiento, incorporación de la incertidumbre y restricciones (p. ej.: costos y disponibilidad de datos) mediante una estrategia estructurada basada en las ciencias de la decisión. La evaluación se basó en la literatura de referencia para los índices disponibles al momento del análisis. Identificamos cuatro vacíos importantes en los índices estudiados: las vías para lograr los objetivos (objetivos medios) no fueron siempre claras o relevantes para los resultados deseados (objetivos fundamentales); el análisis del índice y el entendimiento del comportamiento esperado casi siempre fueron escasos; pocas veces se consideró o explicó la incertidumbre; y casi nunca se consideraron los costos de la implementación. Estos vacíos pueden hacer que los índices sean inadecuados en ciertos contextos de toma de decisiones y son problemáticos para los índices vinculados a los objetivos de biodiversidad y las metas de sustentabilidad. Es de suma importancia asegurarse que los objetivos del índice sean claros y que su diseño esté respaldado por un modelo de procesos relevantes para tratar con los vacíos identificados en nuestro estudio. La aceptación y el uso productivo de los índices mejorarán si el desempeño del índice es evaluado rigurosamente y las suposiciones e incertidumbres se les comunican claramente a los usuarios finales. Lo anterior aumentará la precisión y valor del índice en el seguimiento de los cambios de la biodiversidad y en el apoyo a las decisiones políticas nacionales y mundiales, como el marco de trabajo para la biodiversidad post-2020 establecido por la Convención sobre la Diversidad Biológica.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , Endangered Species , Uncertainty
2.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25832402

ABSTRACT

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Subject(s)
Biodiversity , Human Activities , Animals , Conservation of Natural Resources/trends , Ecology/trends , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Models, Biological , Population Dynamics , Species Specificity
3.
PLoS Biol ; 15(1): e2000942, 2017 01.
Article in English | MEDLINE | ID: mdl-28081142

ABSTRACT

Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.


Subject(s)
Biodiversity , Birds/physiology , Internationality , Introduced Species , Animals , Gross Domestic Product , Species Specificity , Time Factors
4.
PLoS Biol ; 15(3): e2001656, 2017 03.
Article in English | MEDLINE | ID: mdl-28350825

ABSTRACT

The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020-an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet's surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists.


Subject(s)
Biodiversity , Conservation of Natural Resources/trends , Antarctic Regions , Conservation of Natural Resources/methods
5.
Conserv Biol ; 32(2): 366-375, 2018 04.
Article in English | MEDLINE | ID: mdl-28856725

ABSTRACT

Conservation requires successful outcomes. However, success is perceived in many different ways depending on the desired outcome. Through a questionnaire survey, we examined perceptions of success among 355 scientists and practitioners working on amphibian conservation from over 150 organizations in more than 50 countries. We also sought to identify how different types of conservation actions and respondent experience and background influenced perceptions. Respondents identified 4 types of success: species and habitat improvements (84% of respondents); effective program management (36%); outreach initiatives such as education and public engagement (25%); and the application of science-based conservation (15%). The most significant factor influencing overall perceived success was reducing threats. Capacity building was rated least important. Perceptions were influenced by experience, professional affiliation, involvement in conservation practice, and country of residence. More experienced practitioners associated success with improvements to species and habitats and less so with education and engagement initiatives. Although science-based conservation was rated as important, this factor declined in importance as the number of programs a respondent participated in increased, particularly among those from less economically developed countries. The ultimate measure of conservation success-population recovery-may be difficult to measure in many amphibians; difficult to relate to the conservation actions intended to drive it; and difficult to achieve within conventional funding time frames. The relaunched Amphibian Conservation Action Plan provides a framework for capturing lower level processes and outcomes, identifying gaps, and measuring progress.


Subject(s)
Amphibians , Conservation of Natural Resources , Animals , Ecosystem
6.
Conserv Biol ; 31(3): 531-539, 2017 06.
Article in English | MEDLINE | ID: mdl-27696559

ABSTRACT

One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction.


Subject(s)
Conservation of Natural Resources , Data Collection , Endangered Species , Uncertainty , Animals , Extinction, Biological , Risk
7.
Nature ; 537(7621): 488, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27652555
8.
Biol Lett ; 12(4)2016 Apr.
Article in English | MEDLINE | ID: mdl-27072401

ABSTRACT

The identification of species at risk of extinction is a central goal of conservation. As the use of data compiled for IUCN Red List assessments expands, a number of misconceptions regarding the purpose, application and use of the IUCN Red List categories and criteria have arisen. We outline five such classes of misconception; the most consequential drive proposals for adapted versions of the criteria, rendering assessments among species incomparable. A key challenge for the future will be to recognize the point where understanding has developed so markedly that it is time for the next generation of the Red List criteria. We do not believe we are there yet but, recognizing the need for scrutiny and continued development of Red Listing, conclude by suggesting areas where additional research could be valuable in improving the understanding of extinction risk among species.


Subject(s)
Endangered Species , Extinction, Biological , Risk Assessment/methods , Animals , Conservation of Natural Resources , Eukaryota , Population Dynamics
9.
Proc Biol Sci ; 282(1813): 20150928, 2015 Aug 22.
Article in English | MEDLINE | ID: mdl-26246547

ABSTRACT

Global commitments to halt biodiversity decline mean that it is essential to monitor species' extinction risk. However, the work required to assess extinction risk is intensive. We demonstrate an alternative approach to monitoring extinction risk, based on the response of species to external conditions. Using retrospective International Union for Conservation of Nature Red List assessments, we classify transitions in the extinction risk of 497 mammalian carnivores and ungulates between 1975 and 2013. Species that moved to lower Red List categories, or remained Least Concern, were classified as 'lower risk'; species that stayed in a threatened category, or moved to a higher category of risk, were classified as 'higher risk'. Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species biology) and external conditions (human pressure, distribution state and conservation interventions). The model correctly classified up to 90% of all transitions and revealed complex interactions between variables, such as protected areas (PAs) versus human impact. The most important predictors were: past extinction risk, PA extent, geographical range size, body size, taxonomic family and human impact. Our results suggest that monitoring a targeted set of metrics would efficiently identify species facing a higher risk, and could guide the allocation of resources between monitoring species' extinction risk and monitoring external conditions.


Subject(s)
Conservation of Natural Resources/methods , Endangered Species , Extinction, Biological , Mammals/physiology , Animals , Biodiversity , Models, Biological , Risk Assessment/methods
10.
Conserv Biol ; 29(5): 1290-302, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25981192

ABSTRACT

To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Information Dissemination , Technology Transfer , International Cooperation , Terminology as Topic
11.
Conserv Biol ; 29(1): 250-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25124400

ABSTRACT

There is little appreciation of the level of extinction risk faced by one-sixth of the over 65,000 species assessed by the International Union for Conservation of Nature. Determining the status of these data-deficient (DD) species is essential to developing an accurate picture of global biodiversity and identifying potentially threatened DD species. To address this knowledge gap, we used predictive models incorporating species' life history, geography, and threat information to predict the conservation status of DD terrestrial mammals. We constructed the models with 7 machine learning (ML) tools trained on species of known status. The resultant models showed very high species classification accuracy (up to 92%) and ability to correctly identify centers of threatened species richness. Applying the best model to DD species, we predicted 313 of 493 DD species (64%) to be at risk of extinction, which increases the estimated proportion of threatened terrestrial mammals from 22% to 27%. Regions predicted to contain large numbers of threatened DD species are already conservation priorities, but species in these areas show considerably higher levels of risk than previously recognized. We conclude that unless directly targeted for monitoring, species classified as DD are likely to go extinct without notice. Taking into account information on DD species may therefore help alleviate data gaps in biodiversity indicators and conserve poorly known biodiversity.


Subject(s)
Conservation of Natural Resources/methods , Endangered Species , Extinction, Biological , Mammals/physiology , Models, Biological , Algorithms , Animals
12.
Glob Ecol Biogeogr ; 23(1): 40-51, 2014 Jan.
Article in English | MEDLINE | ID: mdl-26430385

ABSTRACT

AIM: Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. LOCATION: Global. METHODS: We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. RESULTS: We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. MAIN CONCLUSIONS: We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.

13.
Conserv Biol ; 28(4): 971-81, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24962314

ABSTRACT

Correctly classifying a species as extinct or extant is of critical importance if current rates of biodiversity loss are to be accurately quantified. Observing an extinction event is rare, so in many cases extinction status is inferred using methods based on the analysis of records of historic sighting events. The accuracy of such methods is difficult to test. However, results of recent experiments with microcosm communities suggest that the rate at which a population declines to extinction, potentially driven by varying environmental conditions, may alter one's ability accurately to infer extinction status. We tested how the rate of population decline, driven by historic environmental change, alters the accuracy of 6 commonly applied sighting-based methods used to infer extinction. We used data from small-scale experimental communities and recorded wild population extirpations. We assessed how accuracy of the different methods was affected by rate of population decline, search effort, and number of sighting events recorded. Rate of population decline and historic population size of the species affected the accuracy of inferred extinction dates; however, faster declines produced more accurate inferred dates of extinction, but only when population sizes were higher. Optimal linear estimation (OLE) offered the most reliable and robust estimates, though no single method performed best in all situations, and it may be appropriate to use a different method if information regarding historic search efforts is available. OLE provided the most accurate estimates of extinction when the number of sighting events used was >10, and future use of this method should take this into account. Data from experimental populations provide added insight into testing techniques to discern wild extirpation events. Care should be taken designing such experiments so that they mirror closely the abundance dynamics of populations affected by real-world extirpation events.


Subject(s)
Conservation of Natural Resources , Extinction, Biological , Animals , Biodiversity , Linear Models , Population Density , Population Dynamics
14.
J Anim Ecol ; 82(2): 345-54, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23066865

ABSTRACT

Mathematical methods for inferring time to extinction have been widely applied but poorly tested. Optimal linear estimation (also called the 'Weibull' or 'Weibull extreme value' model) infers time to extinction from a temporal distribution of species sightings. Previous studies have suggested optimal linear estimation provides accurate estimates of extinction time for some species; however, an in-depth test of the technique is lacking. The use of data from wild populations to gauge the error associated with estimations is often limited by very approximate estimates of the actual extinction date and poor sighting records. Microcosms provide a system in which the accuracy of estimations can be tested against known extinction dates, whilst incorporating a variety of extinction rates created by changing environmental conditions, species identity and species richness. We present the first use of experimental microcosm data to exhaustively test the accuracy of one sighting-based method of inferring time of extinction under a range of search efforts, search regimes, sighting frequencies and extinction rates. Our results show that the accuracy of optimal linear estimation can be affected by both observer-controlled parameters, such as change in search effort, and inherent features of the system, such as species identity. Whilst optimal linear estimation provides generally accurate and precise estimates, the technique is susceptible to both overestimation and underestimation of extinction date. Microcosm experiments provide a framework within which the accuracy of extinction predictors can be clearly gauged. Variables such as search effort, search regularity and species identity can significantly affect the accuracy of estimates and should be taken into account when testing extinction predictors in the future.


Subject(s)
Ciliophora/genetics , Ciliophora/physiology , Extinction, Biological , Models, Biological , Animals , Compulsive Behavior , Time Factors
15.
Conserv Biol ; 25(1): 21-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21054525

ABSTRACT

The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Endangered Species , Biodiversity , Congresses as Topic , Extinction, Biological , Risk Assessment/methods
16.
Conserv Biol ; 25(3): 450-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21083762

ABSTRACT

The 2010 biodiversity target agreed by signatories to the Convention on Biological Diversity directed the attention of conservation professionals toward the development of indicators with which to measure changes in biological diversity at the global scale. We considered why global biodiversity indicators are needed, what characteristics successful global indicators have, and how existing indicators perform. Because monitoring could absorb a large proportion of funds available for conservation, we believe indicators should be linked explicitly to monitoring objectives and decisions about which monitoring schemes deserve funding should be informed by predictions of the value of such schemes to decision making. We suggest that raising awareness among the public and policy makers, auditing management actions, and informing policy choices are the most important global monitoring objectives. Using four well-developed indicators of biological diversity (extent of forests, coverage of protected areas, Living Planet Index, Red List Index) as examples, we analyzed the characteristics needed for indicators to meet these objectives. We recommend that conservation professionals improve on existing indicators by eliminating spatial biases in data availability, fill gaps in information about ecosystems other than forests, and improve understanding of the way indicators respond to policy changes. Monitoring is not an end in itself, and we believe it is vital that the ultimate objectives of global monitoring of biological diversity inform development of new indicators.


Subject(s)
Biodiversity , Conservation of Natural Resources/trends , Animals , Endangered Species
17.
Proc Biol Sci ; 277(1697): 3139-47, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20484234

ABSTRACT

Geographical range contraction is a fundamental ecological characteristic of species population decline, but relatively little investigation has been conducted into general trends in the dynamic properties of range collapse. The Yangtze River dolphin or baiji (Lipotes vexillifer), probably the first large mammal species to have become extinct in over 50 years, was believed to have experienced major range collapse during its decline through progressive large-scale range contraction and fragmentation. This range-collapse model is challenged by a new dataset of 406 baiji last-sighting records collected from across the baiji's historical range during an interview survey of Yangtze fishing communities. Although baiji regional abundance may have varied across its range, analyses of the extensive new sighting series provide comprehensive evidence that baiji population decline was not associated with any major contraction in geographical range across the middle-lower Yangtze drainage, even in the decade immediately before probable global extinction of the species. Extinction risk in baiji was therefore seemingly not related to evidence of range collapse. Baiji apparently underwent large-scale periodic and seasonal movements across their range, and we propose that range contraction and fragmentation may not be general biogeographic characteristics for declining populations of mobile species in connected landscapes.


Subject(s)
Dolphins/physiology , Extinction, Biological , Animals , Conservation of Natural Resources , Geography , Humans , Population Dynamics , Rivers , Time Factors
18.
Conserv Biol ; 24(4): 1012-20, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20337689

ABSTRACT

Following creation of the 2010 Biodiversity Target under the Convention on Biological Diversity and adoption of the United Nations Millennium Development Goals, information on status and trends of biodiversity at the national level has become increasingly important to both science and policy. National red lists (NRLs) of threatened species may provide suitable data for reporting on progress toward these goals and for informing national conservation priority setting. This information will also become increasingly important for developing species- and ecosystem-based strategies for climate change adaptation. We conducted a thorough global review of NRLs in 109 countries and analyzed gaps in NRL coverage in terms of geography and taxonomy to determine priority regions and taxonomic groups for further investment. We then examined correlations between the NRL data set and gross domestic product (GDP) and vertebrate species richness. The largest geographic gap was in Oceania, followed by middle Africa, the Caribbean, and western Africa, whereas the largest taxonomic gaps were for invertebrates, fungi, and lichens. The comprehensiveness of NRL coverage within a given country was positively correlated with GDP and negatively correlated with total vertebrate richness and threatened vertebrate richness. This supports the assertion that regions with the greatest and most vulnerable biodiversity receive the least conservation attention and indicates that financial resources may be an integral limitation. To improve coverage of NRLs, we propose a combination of projects that target underrepresented taxa or regions and projects that provide the means for countries to create or update NRLs on their own. We recommend improvements in knowledge transfer within and across regions as a priority for future investment.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Data Collection/methods , Endangered Species , International Cooperation , Animals , Conservation of Natural Resources/statistics & numerical data , Economics , Federal Government , Geography , Species Specificity
19.
Nat Ecol Evol ; 4(3): 384-392, 2020 03.
Article in English | MEDLINE | ID: mdl-32066888

ABSTRACT

Large-scale biodiversity changes are measured mainly through the responses of a few taxonomic groups. Much less is known about the trends affecting most invertebrates and other neglected taxa, and it is unclear whether well-studied taxa, such as vertebrates, reflect changes in wider biodiversity. Here, we present and analyse trends in the UK distributions of over 5,000 species of invertebrates, bryophytes and lichens, measured as changes in occupancy. Our results reveal substantial variation in the magnitude, direction and timing of changes over the last 45 years. Just one of the four major groups analysed, terrestrial non-insect invertebrates, exhibits the declining trend reported among vertebrates and butterflies. Both terrestrial insects and the bryophytes and lichens group increased in average occupancy. A striking pattern is found among freshwater species, which have undergone a strong recovery since the mid-1990s after two decades of decline. We show that, while average occupancy among most groups appears to have been stable or increasing, there has been substantial change in the relative commonness and rarity of individual species, indicating considerable turnover in community composition. Additionally, large numbers of species have experienced substantial declines. Our results suggest a more complex pattern of biodiversity change in the United Kingdom than previously reported.


Subject(s)
Butterflies , Lichens , Animals , Biodiversity , Ecosystem , United Kingdom
20.
Conserv Biol ; 23(2): 317-27, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19040654

ABSTRACT

The task of measuring the decline of global biodiversity and instituting changes to halt and reverse this downturn has been taken up in response to the Convention on Biological Diversity's 2010 target. It is an undertaking made more difficult by the complex nature of biodiversity and the consequent difficulty in accurately gauging its depletion. In the Living Planet Index, aggregated population trends among vertebrate species indicate the rate of change in the status of biodiversity, and this index can be used to address the question of whether or not the 2010 target has been achieved. We investigated the use of generalized additive models in aggregating large quantities of population trend data, evaluated potential bias that results from collation of existing trends, and explored the feasibility of disaggregating the data (e.g., geographically, taxonomically, regionally, and by thematic area). Our results show strengths in length and completeness of data, little evidence of bias toward threatened species, and the possibility of disaggregation into meaningful subsets. Limitations of the data set are still apparent, in particular the dominance of bird data and gaps in tropical-species population coverage. Population-trend data complement the longer-term, but more coarse-grained, perspectives gained by evaluating species-level extinction rates. To measure progress toward the 2010 target, indicators must be adapted and strategically supplemented with existing data to generate meaningful indicators in time. Beyond 2010, it is critical a strategy be set out for the future development of indicators that will deal with existing data gaps and that is intricately tied to the goals of future biodiversity targets.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Vertebrates/physiology , Animals , Ecosystem , Extinction, Biological , International Cooperation , Models, Biological , Population Density , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL