Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Clin Infect Dis ; 67(9): 1364-1372, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29579195

ABSTRACT

Background: Mass screening and treatment (MST) aims to reduce malaria risk in communities by identifying and treating infected persons without regard to illness. Methods: A cluster-randomized trial evaluated malaria incidence with and without MST. Clusters were randomized to 3, 2, or no MST interventions: MST3, 6 clusters (156 households/670 individuals); MST2, 5 clusters (89 households/423 individuals); and MST0, 5 clusters (174 households/777 individuals). All clusters completed the study with 14 residents withdrawing. In a cohort of 324 schoolchildren (MST3, n = 124; MST2, n = 57; MST0, n = 143) negative by microscopy at enrollment, we evaluated the incidence density of malaria during 3 months of MST and 3 months following. The MST intervention involved community-wide expert malaria microscopic screening and standard therapy with dihydroartemisinin-piperaquine and primaquine for glucose-6 phosphate dehydrogenase-normal subjects. All blood examinations included polymerase chain reaction assays, which did not guide on-site treatment. Results: The risk ratios for incidence density of microscopically patent malaria in MST3 or MST2 relative to that in MST0 clusters were 1.00 (95% confidence interval [CI], .53-1.91) and 1.22 (95% CI, .42-3.55), respectively. Similar results were obtained with molecular analysis and species-specific (P. falciparum and P. vivax) infections. Microscopically subpatent, untreated infections accounted for 72% of those infected. Conclusions: Two or 3 rounds of MST within 3 months did not impact the force of anopheline mosquito-borne infection in these communities. The high rate of untreated microscopically subpatent infections likely explains the observed poor impact. Clinical Trials Registration: NCT01878357.


Subject(s)
Antimalarials/therapeutic use , Malaria/drug therapy , Malaria/transmission , Mass Screening , Adult , Cluster Analysis , Drug Therapy, Combination , Female , Humans , Incidence , Indonesia , Malaria/diagnosis , Male , Plasmodium falciparum/isolation & purification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Treatment Outcome
2.
Malar J ; 17(1): 285, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30081911

ABSTRACT

BACKGROUND: Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes. METHODS: 478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST). RESULTS: 5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480-0.0846). Ne estimates were generally small (124.2-1920.3). CONCLUSIONS: A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.


Subject(s)
Anopheles/genetics , Genome, Insect , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Genetic Markers , Population Density , Sequence Analysis, DNA , Uganda
3.
Malar J ; 17(1): 13, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29310656

ABSTRACT

BACKGROUND: The effectiveness of vector control efforts can vary based on the interventions used and local mosquito behaviour and adaptability. In many settings, biting patterns of Anopheles mosquitoes can shift in response to interventions targeting indoor-biting mosquitoes, often resulting in higher proportions of mosquitoes feeding outside or at times when people are not protected. These behaviourally resistant mosquitoes have been shown to sustain residual malaria transmission and limit control efforts. Therefore, it is important to accurately sample mosquitoes to understand their behaviour. METHODS: A variety of traps were evaluated in three geographically diverse sites in malaria-endemic Indonesia to investigate local mosquito feeding behaviour and determine effective traps for surveillance. RESULTS: Eight traps were evaluated in three sites: Canti village, Lampung, Kaliharjo village, Purworejo, and Saketa village, Halmahera, Indonesia, including the gold standard human landing collection (HLC) and a variety of traps targeting host-seeking and resting mosquitoes both indoors and outdoors. Trapping, using indoor and outdoor HLC, the Ifakara tent trap C, goat and human-occupied tents, resting pots and boxes, and CDC miniature light traps was conducted for 16 nights in two sites and 8 nights in a third site, using a Latin square design. Trap efficacy varied by site, with outdoor HLC yielding the highest catch rates in Canti and Kaliharjo and a goat-baited tent trap proving most effective in Saketa. In Canti village, anthropophilic Anopheles sundaicus were caught indoors and outdoors using HLCs, peaking in the early morning. In Kaliharjo, a variety of mosquitoes were caught, mostly outdoors throughout the night. HLC was ineffective in Saketa, the only site where a goat-baited tent trap was tested. This trap was effective in catching zoophilic vectors outdoors before midnight. CONCLUSIONS: Different trapping methods were suitable for different species, likely reflecting differences in behaviour among species. The three villages, each located on a different island in the Indonesian archipelago, contained mosquito populations with unique behaviours. These data suggest that the effectiveness of specific vector monitoring and control measures may vary by location.


Subject(s)
Anopheles/physiology , Entomology/methods , Feeding Behavior , Mosquito Vectors/physiology , Animals , Goats , Humans , Indonesia
4.
Malar J ; 16(1): 310, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28764710

ABSTRACT

BACKGROUND: Indonesia is home to a variety of malaria vectors whose specific bionomic traits remain largely uncharacterized. Species-specific behaviours, such as host feeding preferences, impact the dynamics of malaria transmission and the effectiveness of vector control interventions. METHODS: To examine species-specific host attraction and feeding behaviours, a Latin square design was used to compare Anopheles mosquitoes attracted to human, cow, and goat-baited tents. Anopheles mosquitoes were collected hourly from the inside walls of each baited tent. Species were morphologically and then molecularly identified using rDNA ITS2 sequences. The head and thorax of individual specimens were analysed for Plasmodium DNA using PCR. Bloodmeals were identified using a multiplex PCR. RESULTS: A total of 1024, 137, and 74 Anopheles were collected over 12 nights in cow, goat, and human-baited tents, respectively. The species were identified as Anopheles kochi, Anopheles farauti s.s., Anopheles hackeri, Anopheles hinesorum, Anopheles indefinitus, Anopheles punctulatus, Anopheles tessellatus, Anopheles vagus, and Anopheles vanus, many of which are known to transmit human malaria. Molecular analysis of blood meals revealed a high level of feeding on multiple host species in a single night. Anopheles kochi, An. indefinitus, and An. vanus were infected with Plasmodium vivax at rates comparable to primary malaria vectors. CONCLUSIONS: The species distributions of Anopheles mosquitoes attracted to human, goat, and cow hosts were similar. Eight of nine sporozoite positive samples were captured with animal-baited traps, indicating that even predominantly zoophilic mosquitoes may be contributing to malaria transmission. Multiple host feeding and flexibility in blood feeding behaviour have important implications for malaria transmission, malaria control, and the effectiveness of intervention and monitoring methods, particularly those that target human-feeding vectors.


Subject(s)
Anopheles/physiology , Cattle , Goats , Animals , Anopheles/classification , DNA, Protozoan/analysis , DNA, Ribosomal/analysis , Feeding Behavior , Female , Humans , Indonesia , Malaria/transmission , Male , Mosquito Control , Mosquito Vectors/classification , Mosquito Vectors/physiology , Odorants/analysis , Sequence Analysis, DNA , Species Specificity
5.
Malar J ; 16(1): 230, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28569159

ABSTRACT

BACKGROUND: Molecular tools for detecting malaria-infected mosquitoes with improved practicality, sensitivity and specificity, and high-throughput are required. A common PCR technique used to detect mosquitoes infected with Plasmodium spp. is a nested PCR assay based on the 18s-rRNA gene. However, this technique has several technical limitations, is laborious and time consuming. METHODS: In this study, a PCR-based on the Plasmodium cytochrome oxidase I (COX-I) gene was compared with the 18s-rRNA nested PCR using serial dilutions (330-0.0012 pg) of DNA from Plasmodium vivax, Plasmodium falciparum and Plasmodium knowlesi and with DNA from 48 positive and negative Kenyan mosquitoes (previously detected by using both ELISA and PCR). This assay for Plasmodium spp. DNA detection using the fast COX-I PCR assay was then performed individually on 2122 field collected mosquitoes (from the Solomon Islands) in which DNA was extracted from head and thorax. RESULTS: The fast COX-I PCR assay took 1 h to run and consistently detected as low as to 0.043 pg of parasite DNA (equivalent to two parasites) in a single PCR, while analyses with the 18s-rRNA nested PCR required 4 h to complete with a consistent detection threshold of 1.5 pg of DNA. Both assays produced concordant results when applied to the 48 Kenyan control samples with known Plasmodium spp. infection status. The fast COX-I PCR identified 23/2122 Plasmodium-infected mosquitoes from the Solomon Islands. CONCLUSIONS: This new COX-I PCR adapted for a single PCR reaction is a faster, simpler, cheaper, more sensitive technique amenable to high-throughput analyses for Plasmodium DNA detection in mosquitoes and is comparable to the 18s-rRNA nested PCR. The improved sensitivity seen with the fast COX-I PCR will improve the accuracy of mosquito infection rate determination.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Plasmodium falciparum/isolation & purification , Plasmodium knowlesi/isolation & purification , Plasmodium vivax/isolation & purification , Polymerase Chain Reaction/methods , Protozoan Proteins/analysis , Animals , Anopheles/parasitology , Electron Transport Complex IV/analysis , Female , Melanesia , Plasmodium falciparum/enzymology , Plasmodium knowlesi/enzymology , Plasmodium vivax/enzymology , RNA, Ribosomal, 18S/analysis , Sensitivity and Specificity , Sporozoites/enzymology , Sporozoites/isolation & purification
6.
Nucleic Acids Res ; 43(Database issue): D707-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25510499

ABSTRACT

VectorBase is a National Institute of Allergy and Infectious Diseases supported Bioinformatics Resource Center (BRC) for invertebrate vectors of human pathogens. Now in its 11th year, VectorBase currently hosts the genomes of 35 organisms including a number of non-vectors for comparative analysis. Hosted data range from genome assemblies with annotated gene features, transcript and protein expression data to population genetics including variation and insecticide-resistance phenotypes. Here we describe improvements to our resource and the set of tools available for interrogating and accessing BRC data including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows. VectorBase also actively supports our community through hands-on workshops and online tutorials. All information and data are freely available from our website at https://www.vectorbase.org/.


Subject(s)
Databases, Genetic , Disease Vectors , Genomics , Animals , Biological Ontologies , Gene Expression Profiling , Genetic Variation , Genome , Humans , Insecticide Resistance , Internet , Invertebrates/genetics , Metabolic Networks and Pathways/genetics
7.
Malar J ; 15: 151, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26960327

ABSTRACT

BACKGROUND: In the 1970s, Anopheles farauti in the Solomon Island responded to indoor residual spraying with DDT by increasingly feeding more outdoors and earlier in the evening. Although long-lasting insecticidal nets (LLINs) are now the primary malaria vector control intervention in the Solomon Islands, only a small proportion of An. farauti still seek blood meals indoors and late at night where they are vulnerable to being killed by contract with the insecticides in LLINs. The effectiveness of LLINs and indoor residual spraying (IRS) in controlling malaria transmission where the vectors are exophagic and early biting will depend on whether the predominant outdoor or early biting phenotypes are associated with a subpopulation of the vectors present. METHODS: Mark-release-recapture experiments were conducted in the Solomon Islands to determine if individual An. farauti repeat the same behaviours over successive feeding cycles. The two behavioural phenotypes examined were those on which the WHO recommended malaria vector control strategies, LLINs and IRS, depend: indoor and late night biting. RESULTS: Evidence was found for An. farauti being a single population regarding time (early evening or late night) and location (indoor or outdoor) of blood feeding. Individual An. farauti did not consistently repeat behavioural phenotypes expressed for blood feeding (e.g., while most mosquitoes that fed early and outdoors, and would repeat those behaviours, some fed late at night or indoors in the next feeding cycle). CONCLUSIONS: The finding that An. farauti is a homogeneous population is significant, because during the multiple feeding cycles required to complete the extrinsic incubation period, many individual female anophelines will enter houses late at night and be exposed to the insecticides used in LLINs or IRS. This explains, in part, the control that LLINs and IRS have exerted against a predominantly outdoor feeding vector, such as An. farauti. These findings may be relevant to many of the outdoor feeding vectors that dominate transmission in much of the malaria endemic world and justifies continued use of LLINs. However, the population-level tendency of mosquitoes to feed outdoors and early in the evening does require complementary interventions to accelerate malaria control towards elimination.


Subject(s)
Anopheles/physiology , Animals , Anopheles/growth & development , Biological Assay , Feeding Behavior , Female , Humans , Melanesia
8.
Malar J ; 15: 152, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26964528

ABSTRACT

BACKGROUND: The proportion of blood meals that mosquitoes take from a host species is a function of the interplay of extrinsic (abundance and location of potential hosts) and intrinsic (innate preference) factors. A mark-release-recapture experiment addressed whether host preference in a population of Anopheles farauti was uniform or if there were anthropophilic and zoophilic subpopulations. The corresponding fitness associated with selecting different hosts for blood meals was compared by measuring fecundity. METHODS: The attractiveness of humans for blood meals by An. farauti in the Solomon Islands was compared to pigs using tent traps. Host fidelity was assessed by mark-release-recapture experiments in which different colour dusts were linked to the host to which the mosquito was first attracted. Outdoor resting An. farauti were captured on barrier screens and the human blood index (HBI) as well as the feeding index were calculated. The fecundity of individual An. farauti after feeding on either humans or pigs was assessed from blood-fed mosquitoes held in individual oviposition chambers. RESULTS: Anopheles farauti were more attracted to humans than pigs at a ratio of 1.31:1.00. The mark-release-recapture experiment found evidence for An. farauti being a single population regarding host preference. The HBI of outdoor resting An. farauti was 0.93 and the feeding index was 1.29. Anopheles farauti that fed on a human host laid more eggs but had a longer oviposition time compared to An. farauti that had blood fed on a pig. CONCLUSIONS: One of the strongest drivers for host species preference was the relative abundance of the different host species. Here, An. farauti have a slight preference for humans over pigs as blood meal sources. However, the limited availability of alternative hosts relative to humans in the Solomon Islands ensures a very high proportion of blood meals are obtained from humans, and thus, the transmission potential of malaria by An. farauti is high.


Subject(s)
Anopheles/physiology , Host Specificity , Animals , Anopheles/growth & development , Biological Assay , Feeding Behavior , Female , Fertility , Humans , Melanesia , Swine
9.
Malar J ; 15: 156, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26969430

ABSTRACT

BACKGROUND: The effectiveness of vector control on malaria transmission by long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) depends on the vectors entering houses to blood feed and rest when people are inside houses. In the Solomon Islands, significant reductions in malaria have been achieved in the past 20 years with insecticide-treated bed nets, IRS, improved diagnosis and treatment with artemisinin combination therapies; despite the preference of the primary vector, Anopheles farauti, to feed outdoors and early in the evening and thereby avoid potential exposure to insecticides. Rational development of tools to complement LLINs and IRS by attacking vectors outdoor requires detailed knowledge of the biology and behaviours of the target species. METHODS: Malaria transmission in Central Province, Solomon Islands was estimated by measuring the components comprising the entomological inoculation rate (EIR) as well as the vectorial capacity of An. farauti. In addition, the daily and seasonal biting behaviour of An. farauti, was examined and the duration of the feeding cycle was estimated with a mark-release-recapture experiment. RESULTS: Anopheles farauti was highly exophagic with 72% captured by human landing catches (HLC) outside of houses. Three-quarters (76%) of blood feeding on humans was estimated to occur before 21.00 h. When the hourly location of humans was considered, the proportion of exposure to mosquito bites on humans occurring indoors (πi) was only 0.130 ± 0.129. Peak densities of host seeking An. farauti occurred between October and January. The annual EIR was estimated to be 2.5 for 2012 and 33.2 for 2013. The length of the feeding cycle was 2.1 days. CONCLUSIONS: The short duration of the feeding cycle by this species offers an explanation for the substantial control of malaria that has been achieved in the Solomon Islands by LLINs and IRS. Anopheles farauti is primarily exophagic and early biting, with 13% of mosquitoes entering houses to feed late at night during each feeding cycle. The two-day feeding cycle of An. farauti requires females to take 5-6 blood meals before the extrinsic incubation period (EIP) is completed; and this could translate into substantial population-level mortality by LLINs or IRS before females would be infectious to humans with Plasmodium falciparum and Plasmodium vivax. Although An. farauti is primarily exophagic, the indoor vector control tools recommended by the World Health Organization (LLINs and IRS) can still provide an important level of control. Nonetheless, elimination will likely require vector control tools that target other bionomic vulnerabilities to suppress transmission outdoors and that complement the control provided by LLINs and IRS.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Disease Transmission, Infectious/prevention & control , Feeding Behavior , Insecticide-Treated Bednets , Malaria/prevention & control , Malaria/transmission , Adult , Animals , Female , Humans , Melanesia , Mosquito Control/methods , Plasmodium falciparum , Plasmodium vivax
10.
Malar J ; 15: 164, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26980326

ABSTRACT

BACKGROUND: There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. METHODS: The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. RESULTS: Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). CONCLUSIONS: The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most productive larval sites of this malaria vector, were "few, fixed and findable" and theoretically, therefore, amenable to successful LSM. However, the immense scale and complexity of these ecosystems in which An. farauti larvae are found raises questions regarding the ability to effectively control the larvae, as incomplete larviciding could trigger density dependent effects resulting in increased larval survivorship. While LSM has the potential to significantly contribute to malaria control of this early and outdoor biting vector, more information on the distribution of larvae within these extensive habitats is required to maximize the effectiveness of LSM.


Subject(s)
Anopheles/growth & development , Ecosystem , Animals , Cross-Sectional Studies , Female , Larva/growth & development , Longitudinal Studies , Melanesia , Phylogeography , Population Density
11.
Malar J ; 15: 192, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-27060058

ABSTRACT

BACKGROUND: Members of the Anopheles punctulatus group dominate Papua, Indonesia and Papua New Guinea (PNG), with a geographic range that extends south through Vanuatu. An. farauti and An. punctulatus are the presumed major vectors in this region. Although this group of species has been extensively studied in PNG and the southern archipelagoes within their range, their distribution, ecology and vector behaviours have not been well characterized in eastern Indonesia. METHODS: Mosquitoes were collected in five villages in Jayapura province, Papua, Indonesia using human-landing collections, animal-baited tents and backpack aspirators. Mosquitoes were morphologically typed and then molecularly distinguished based on ribosomal ITS2 sequences and tested for Plasmodium falciparum and P. vivax infection using circumsporozoite ELISA and PCR. RESULTS: The presence and vector status of An. farauti 4 in Papua, Indonesia is confirmed here for the first time. The data indicate that this species is entering houses at a rate that increases its potential to come into contact with humans and act as a major malaria vector. An. farauti 4 was also abundant outdoors and biting humans during early evening hours. Other species collected in this area include An. farauti 1, An. hinesorum, An. koliensis, An. punctulatus, and An. tessellatus. Proboscis morphology was highly variable within each species, lending support to the notion that this characteristic is not a reliable indicator to distinguish species within the An. punctulatus group. CONCLUSIONS: The vector composition in Papua, Indonesia is consistent with certain northern areas of PNG, but the behaviours of anophelines sampled in this region, such as early and indoor human biting of An. farauti 4, may enable them to act as major vectors of malaria. Presumed major vectors An. farauti and An. punctulatus were not abundant among these samples. Morphological identification of anophelines in this sample was often inaccurate, highlighting the importance of using molecular analysis in conjunction with morphological investigations to update keys and training tools.


Subject(s)
Anopheles/classification , Anopheles/physiology , Feeding Behavior , Insect Vectors , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Animals , Anopheles/anatomy & histology , Anopheles/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Indonesia , Sequence Analysis, DNA
12.
Malar J ; 15: 128, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26928594

ABSTRACT

BACKGROUND: Nested PCRs based on the Plasmodium 18s-rRNA gene have been extensively used for human malaria diagnosis. However, they are not practical when large quantities of samples need to be processed, further there have been challenges in the performance and when interpreting results, especially when submicroscopic infections are analysed. Here the use of "direct PCR" was investigated with the aim of improving diagnosis in the malaria elimination era. METHODS: The performance of the Plasmodium cytochrome oxidase III gene (COX-III) based novel malaria detection strategies (direct nested PCR and direct single PCR) were compared using a 18s-rRNA direct nested PCR as a reference tool. Evaluations were based on sensitivity, specificity and the ability to detect mixed infections using control blood spot samples and field collected blood samples with final species diagnosis confirmation by sequencing. RESULTS: The COX-III direct PCR (limit of detection: 0.6-2 parasites/µL) was more sensitive than the 18s-rRNA direct nested PCR (limit of detection: 2-10 parasites/µL). The COX-III direct PCR identified all 21 positive controls (no mixed infections detected) while the 18s-rRNA direct nested PCR identified 18/21 (including four mixed infections). Different concentrations of simulated mixed infections (Plasmodium vivax and Plasmodium falciparum) suggest that the COX-III direct PCR detects only the predominant species. When the 18s-rRNA direct nested PCR was used to detect Plasmodium in field collected bloods spots (n = 3833), there was discrepancy in the results from the genus PCR (16 % positive) and the species-specific PCR (5 % positive). Further, a large portion of a subset of these positive samples (93 % for genus and 60 % for P. vivax), did not align with Plasmodium sequences. In contrast, the COX-III direct PCR clearly identified (single bands confirmed with sequencing) 2 % positive Plasmodium samples including P. vivax, P. falciparum, Plasmodium malariae and Plasmodium ovale wallikeri. CONCLUSIONS: The COX-III single direct PCR is an alternative method for accurate detection of Plasmodium microscopic and submicroscopic infections in humans, especially when a large number of samples require screening. This PCR does not require DNA isolation, is sensitive, quick, produces confident/clear results, identifies all the Plasmodium species infecting humans, and is cost-effective.


Subject(s)
Electron Transport Complex IV/genetics , Malaria/diagnosis , Plasmodium/genetics , Protozoan Proteins/genetics , Base Sequence , DNA, Protozoan/blood , DNA, Protozoan/genetics , Dried Blood Spot Testing , Humans , Limit of Detection , Malaria/parasitology , Molecular Sequence Data , Parasitemia/diagnosis , Polymerase Chain Reaction , Sequence Alignment
13.
Malar J ; 13: 424, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25373418

ABSTRACT

BACKGROUND: Agent-based models (ABMs) have been used to model the behaviour of individual mosquitoes and other aspects of malaria. In this paper, a conceptual entomological model of the population dynamics of Anopheles gambiae and the agent-based implementations derived from it are described. Hypothetical vector control interventions (HVCIs) are implemented to target specific activities in the mosquito life cycle, and their impacts are evaluated. METHODS: The core model is described in terms of the complete An. gambiae mosquito life cycle. Primary features include the development and mortality rates in different aquatic and adult stages, the aquatic habitats and oviposition. The density- and age-dependent larval and adult mortality rates (vector senescence) allow the model to capture the age-dependent aspects of the mosquito biology. Details of hypothetical interventions are also described. RESULTS: Results show that with varying coverage and temperature ranges, the hypothetical interventions targeting the gonotrophic cycle stages produce higher impacts than the rest in reducing the potentially infectious female (PIF) mosquito populations, due to their multi-hour mortality impacts and their applicability at multiple gonotrophic cycles. Thus, these stages may be the most effective points of target for newly developed and novel interventions. A combined HVCI with low coverage can produce additive synergistic impacts and can be more effective than isolated HVCIs with comparatively higher coverages. It is emphasized that although the model described in this paper is designed specifically around the mosquito An. gambiae, it could effectively apply to many other major malaria vectors in the world (including the three most efficient nominal anopheline species An. gambiae, Anopheles coluzzii and Anopheles arabiensis) by incorporating a variety of factors (seasonality cycles, rainfall, humidity, etc.). Thus, the model can essentially be treated as a generic Anopheles model, offering an excellent framework for such extensions. The utility of the core model has also been demonstrated by several other applications, each of which investigates well-defined biological research questions across a variety of dimensions (including spatial models, insecticide resistance, and sterile insect techniques).


Subject(s)
Anopheles/physiology , Insect Vectors/physiology , Models, Biological , Population Dynamics , Animals , Ecosystem , Feeding Behavior/physiology , Female , Larva/physiology , Malaria/transmission , Male , Temperature
14.
Proc Natl Acad Sci U S A ; 108(32): E421-30, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21715657

ABSTRACT

Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.


Subject(s)
Anopheles/genetics , Circadian Rhythm/genetics , Gene Expression Profiling , Gene Expression Regulation , Genome, Insect/genetics , Insect Vectors/genetics , Malaria/parasitology , Animals , Circadian Clocks/genetics , Female , Genes, Insect/genetics , Genetic Variation , Immunity/genetics , Membranes/metabolism , Metabolic Networks and Pathways/genetics , Olfactory Pathways/metabolism , Protein Biosynthesis/genetics , Transcription, Genetic , Vision, Ocular/genetics
15.
Malar J ; 12: 290, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23965136

ABSTRACT

BACKGROUND: Agent-based models (ABMs) have been used to estimate the effects of malaria-control interventions. Early studies have shown the efficacy of larval source management (LSM) and insecticide-treated nets (ITNs) as vector-control interventions, applied both in isolation and in combination. However, the robustness of results can be affected by several important modelling assumptions, including the type of boundary used for landscapes, and the number of replicated simulation runs reported in results. Selection of the ITN coverage definition may also affect the predictive findings. Hence, by replication, independent verification of prior findings of published models bears special importance. METHODS: A spatially-explicit entomological ABM of Anopheles gambiae is used to simulate the resource-seeking process of mosquitoes in grid-based landscapes. To explore LSM and replicate results of an earlier LSM study, the original landscapes and scenarios are replicated by using a landscape generator tool, and 1,800 replicated simulations are run using absorbing and non-absorbing boundaries. To explore ITNs and evaluate the relative impacts of the different ITN coverage schemes, the settings of an earlier ITN study are replicated, the coverage schemes are defined and simulated, and 9,000 replicated simulations for three ITN parameters (coverage, repellence and mortality) are run. To evaluate LSM and ITNs in combination, landscapes with varying densities of houses and human populations are generated, and 12,000 simulations are run. RESULTS: General agreement with an earlier LSM study is observed when an absorbing boundary is used. However, using a non-absorbing boundary produces significantly different results, which may be attributed to the unrealistic killing effect of an absorbing boundary. Abundance cannot be completely suppressed by removing aquatic habitats within 300 m of houses. Also, with density-dependent oviposition, removal of insufficient number of aquatic habitats may prove counter-productive. The importance of performing large number of simulation runs is also demonstrated. For ITNs, the choice of coverage scheme has important implications, and too high repellence yields detrimental effects. When LSM and ITNs are applied in combination, ITNs' mortality can play more important roles with higher densities of houses. With partial mortality, increasing ITN coverage is more effective than increasing LSM coverage, and integrating both interventions yields more synergy as the densities of houses increase. CONCLUSIONS: Using a non-absorbing boundary and reporting average results from sufficiently large number of simulation runs are strongly recommended for malaria ABMs. Several guidelines (code and data sharing, relevant documentation, and standardized models) for future modellers are also recommended.


Subject(s)
Anopheles/drug effects , Entomology/methods , Health Services Research/methods , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/administration & dosage , Mosquito Control/methods , Animals , Female , Humans , Larva/drug effects , Models, Biological , Models, Statistical
16.
Malar J ; 12: 49, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23379959

ABSTRACT

BACKGROUND: Determining the proportion of blood meals on humans by outdoor-feeding and resting mosquitoes is challenging. This is largely due to the difficulty of finding an adequate and unbiased sample of resting, engorged mosquitoes to enable the identification of host blood meal sources. This is particularly difficult in the south-west Pacific countries of Indonesia, the Solomon Islands and Papua New Guinea where thick vegetation constitutes the primary resting sites for the exophilic mosquitoes that are the primary malaria and filariasis vectors. METHODS: Barrier screens of shade-cloth netting attached to bamboo poles were constructed between villages and likely areas where mosquitoes might seek blood meals or rest. Flying mosquitoes, obstructed by the barrier screens, would temporarily stop and could then be captured by aspiration at hourly intervals throughout the night. RESULTS: In the three countries where this method was evaluated, blood-fed females of Anopheles farauti, Anopheles bancroftii, Anopheles longirostris, Anopheles sundaicus, Anopheles vagus, Anopheles kochi, Anopheles annularis, Anopheles tessellatus, Culex vishnui, Culex quinquefasciatus and Mansonia spp were collected while resting on the barrier screens. In addition, female Anopheles punctulatus and Armigeres spp as well as male An. farauti, Cx. vishnui, Cx. quinquefasciatus and Aedes species were similarly captured. CONCLUSIONS: Building barrier screens as temporary resting sites in areas where mosquitoes were likely to fly was an extremely time-effective method for collecting an unbiased representative sample of engorged mosquitoes for determining the human blood index.


Subject(s)
Culicidae/classification , Culicidae/physiology , Entomology/methods , Animals , Feeding Behavior , Female , Human Experimentation , Humans , Indonesia , Male , Melanesia , Papua New Guinea
17.
BMC Bioinformatics ; 12: 130, 2011 May 03.
Article in English | MEDLINE | ID: mdl-21535899

ABSTRACT

BACKGROUND: Transposable elements (TEs) are mobile sequences found in nearly all eukaryotic genomes. They have the ability to move and replicate within a genome, often influencing genome evolution and gene expression. The identification of TEs is an important part of every genome project. The number of sequenced genomes is rapidly rising, and the need to identify TEs within them is also growing. The ability to do this automatically and effectively in a manner similar to the methods used for genes is of increasing importance. There exist many difficulties in identifying TEs, including their tendency to degrade over time and that many do not adhere to a conserved structure. In this work, we describe a homology-based approach for the automatic identification of high-quality consensus TEs, aimed for use in the analysis of newly sequenced genomes. RESULTS: We describe a homology-based approach for the automatic identification of TEs in genomes. Our modular approach is dependent on a thorough and high-quality library of representative TEs. The implementation of the approach, named TESeeker, is BLAST-based, but also makes use of the CAP3 assembly program and the ClustalW2 multiple sequence alignment tool, as well as numerous BioPerl scripts. We apply our approach to newly sequenced genomes and successfully identify consensus TEs that are up to 99% identical to manually annotated TEs. CONCLUSIONS: While TEs are known to be a major force in the evolution of genomes, the automatic identification of TEs in genomes is far from mature. In particular, there is a lack of automated homology-based approaches that produce high-quality TEs. Our approach is able to generate high-quality consensus TE sequences automatically, requiring the user to only provide a few basic parameters. This approach is intentionally modular, allowing researchers to use components separately or iteratively. Our approach is most effective for TEs with intact reading frames. The implementation, TESeeker, is available for download as a virtual appliance, while the library of representative TEs is available as a separate download.


Subject(s)
DNA Transposable Elements , Genome , Sequence Homology, Nucleic Acid , Animals , Base Sequence , Conserved Sequence , Eukaryota/genetics , Gene Library , Humans
18.
J Clin Invest ; 118(4): 1266-76, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18382739

ABSTRACT

There are still approximately 500 million cases of malaria and 1 million deaths from malaria each year. Yet recently, malaria incidence has been dramatically reduced in some parts of Africa by increasing deployment of anti-mosquito measures and new artemisinin-containing treatments, prompting renewed calls for global eradication. However, treatment and mosquito control currently depend on too few compounds and thus are vulnerable to the emergence of compound-resistant parasites and mosquitoes. As discussed in this Review, new drugs, vaccines, and insecticides, as well as improved surveillance methods, are research priorities. Insights into parasite biology, human immunity, and vector behavior will guide efforts to translate parasite and mosquito genome sequences into novel interventions.


Subject(s)
Malaria/parasitology , Animals , Antimalarials/therapeutic use , Drug Resistance/drug effects , Humans , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Malaria Vaccines/immunology , Plasmodium falciparum/physiology
19.
Nucleic Acids Res ; 37(Database issue): D583-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19028744

ABSTRACT

VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data.


Subject(s)
Arthropod Vectors/genetics , Culicidae/genetics , Databases, Genetic , Aedes/genetics , Animals , Anopheles/genetics , Culex/genetics , Culicidae/metabolism , Gene Expression Profiling , Genome, Insect , Genomics , Ixodes/genetics , Pediculus/genetics , Vocabulary, Controlled
20.
Malar J ; 9: 293, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-20974007

ABSTRACT

BACKGROUND: Alternative arrangements of chromosome 2 inversions in Anopheles gambiae are important sources of population structure, and are associated with adaptation to environmental heterogeneity. The forces responsible for their origin and maintenance are incompletely understood. Molecular characterization of inversion breakpoints provides insight into how they arose, and provides the basis for development of molecular karyotyping methods useful in future studies. METHODS: Sequence comparison of regions near the cytological breakpoints of 2Rb allowed the molecular delineation of breakpoint boundaries. Comparisons were made between the standard 2R+b arrangement in the An. gambiae PEST reference genome and the inverted 2Rb arrangements in the An. gambiae M and S genome assemblies. Sequence differences between alternative 2Rb arrangements were exploited in the design of a PCR diagnostic assay, which was evaluated against the known chromosomal banding pattern of laboratory colonies and field-collected samples from Mali and Cameroon. RESULTS: The breakpoints of the 7.55 Mb 2Rb inversion are flanked by extensive runs of the same short (72 bp) tandemly organized sequence, which was likely responsible for chromosomal breakage and rearrangement. Application of the molecular diagnostic assay suggested that 2Rb has a single common origin in An. gambiae and its sibling species, Anopheles arabiensis, and also that the standard arrangement (2R+b) may have arisen twice through breakpoint reuse. The molecular diagnostic was reliable when applied to laboratory colonies, but its accuracy was lower in natural populations. CONCLUSIONS: The complex repetitive sequence flanking the 2Rb breakpoint region may be prone to structural and sequence-level instability. The 2Rb molecular diagnostic has immediate application in studies based on laboratory colonies, but its usefulness in natural populations awaits development of complementary molecular tools.


Subject(s)
Anopheles/genetics , Chromosome Inversion , Chromosomes, Insect , Animals , Anopheles/cytology , Cameroon , Chromosome Banding/methods , Entomology/methods , Humans , Karyotyping/methods , Mali , Polymerase Chain Reaction/methods , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL