Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nat Chem Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965384

ABSTRACT

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.

2.
Bioorg Med Chem Lett ; 27(5): 1278-1283, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28148462

ABSTRACT

The long chain free fatty acid receptor 4 (FFA4/GPR120) has recently been recognized as lipid sensor playing important roles in nutrient sensing and inflammation and thus holds potential as a therapeutic target for type 2 diabetes and metabolic syndrome. To explore the effects of stimulating this receptor in animal models of metabolic disease, we initiated work to identify agonists with appropriate pharmacokinetic properties to support progression into in vivo studies. Extensive SAR studies of a series of phenylpropanoic acids led to the identification of compound 29, a FFA4 agonist which lowers plasma glucose in two preclinical models of type 2 diabetes.


Subject(s)
Phenylpropionates/pharmacology , Receptors, G-Protein-Coupled/agonists , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Humans , Male , Mice , Phenylpropionates/chemistry , Phenylpropionates/pharmacokinetics , Phenylpropionates/therapeutic use , Protein Binding/drug effects , Rats , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 24(14): 3100-3, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24881566

ABSTRACT

The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.


Subject(s)
Receptors, G-Protein-Coupled/agonists , Sulfonamides/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Insulin/agonists , Mice , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
4.
Nat Commun ; 15(1): 5558, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977672

ABSTRACT

Deletion of the maternal UBE3A allele causes Angelman syndrome (AS); because paternal UBE3A is epigenetically silenced by a long non-coding antisense (UBE3A-ATS) in neurons, this nearly eliminates UBE3A protein in the brain. Reactivating paternal UBE3A holds promise for treating AS. We previously showed topoisomerase inhibitors can reactivate paternal UBE3A, but their therapeutic challenges prompted our search for small molecule unsilencers with a different mechanism of action. Here, we found that (S)-PHA533533 acts through a novel mechanism to significantly increase paternal Ube3a mRNA and UBE3A protein levels while downregulating Ube3a-ATS in primary neurons derived from AS model mice. Furthermore, peripheral delivery of (S)-PHA533533 in AS model mice induces widespread neuronal UBE3A expression. Finally, we show that (S)-PHA533533 unsilences paternal UBE3A in AS patient-derived neurons, highlighting its translational potential. Our findings provide a lead for developing a small molecule treatment for AS that could be safe, non-invasively delivered, and capable of brain-wide unsilencing of paternal UBE3A.


Subject(s)
Angelman Syndrome , Disease Models, Animal , Neurons , Ubiquitin-Protein Ligases , Angelman Syndrome/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Mice , Neurons/metabolism , Humans , Male , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Brain/metabolism
5.
J Org Chem ; 78(24): 12726-34, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24256447

ABSTRACT

A synthesis of the benzothiazepine phosphonic acid 3, employing both enzymatic and transition metal catalysis, is described. The quaternary chiral center of 3 was obtained by resolution of ethyl (2-ethyl)norleucinate (4) with porcine liver esterase (PLE) immobilized on Sepabeads. The resulting (R)-amino acid (5) was converted in two steps to aminosulfate 7, which was used for construction of the benzothiazepine ring. Benzophenone 15, prepared in four steps from trimethylhydroquinone 11, enabled sequential incorporation of phosphorus (Arbuzov chemistry) and sulfur (Pd(0)-catalyzed thiol coupling) leading to mercaptan intermediate 18. S-Alkylation of 18 with aminosulfate 7 followed by cyclodehydration afforded dihydrobenzothiazepine 20. Iridium-catalyzed asymmetric hydrogenation of 20 with the complex of [Ir(COD)2BArF] (26) and Taniaphos ligand P afforded the (3R,5R)-tetrahydrobenzothiazepine 30 following flash chromatography. Oxidation of 30 to sulfone 31 and phosphonate hydrolysis completed the synthesis of 3 in 12 steps and 13% overall yield.


Subject(s)
Esterases/metabolism , Iridium/chemistry , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Symporters/antagonists & inhibitors , Thiazepines/pharmacology , Animals , Catalysis , Crystallography, X-Ray , Esterases/chemistry , Humans , Liver/enzymology , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Swine , Thiazepines/chemistry , Thiazepines/metabolism
6.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37961297

ABSTRACT

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.

7.
J Clin Invest ; 117(8): 2337-46, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17657314

ABSTRACT

Liver X receptors (LXRs) alpha and beta are transcriptional regulators of cholesterol homeostasis and potential targets for the development of antiatherosclerosis drugs. However, the specific roles of individual LXR isotypes in atherosclerosis and the pharmacological effects of synthetic agonists remain unclear. Previous work has shown that mice lacking LXRalpha accumulate cholesterol in the liver but not in peripheral tissues. In striking contrast, we demonstrate here that LXRalpha(-/-)apoE(-/-) mice exhibit extreme cholesterol accumulation in peripheral tissues, a dramatic increase in whole-body cholesterol burden, and accelerated atherosclerosis. The phenotype of these mice suggests that the level of LXR pathway activation in macrophages achieved by LXRbeta and endogenous ligand is unable to maintain homeostasis in the setting of hypercholesterolemia. Surprisingly, however, a highly efficacious synthetic agonist was able to compensate for the loss of LXRalpha. Treatment of LXRalpha(-/-)apoE(-/-) mice with synthetic LXR ligand ameliorates the cholesterol overload phenotype and reduces atherosclerosis. These observations indicate that LXRalpha has an essential role in maintaining peripheral cholesterol homeostasis in the context of hypercholesterolemia and provide in vivo support for drug development strategies targeting LXRbeta.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Cholesterol/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/deficiency , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Apolipoproteins E/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , DNA-Binding Proteins/agonists , Drug Design , Homeostasis/genetics , Hypercholesterolemia/drug therapy , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Ligands , Liver X Receptors , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Mice , Mice, Knockout , Orphan Nuclear Receptors , Phenotype , Receptors, Cytoplasmic and Nuclear/agonists
8.
J Immunol ; 181(6): 4265-71, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18768884

ABSTRACT

The liver X receptors (LXRalpha/beta) are orphan nuclear receptors that are expressed in a large number of cell types and have been shown to have anti-inflammatory properties. Nuclear receptors have previously proved to be amenable targets for small molecular mass pharmacological agents in asthma, and so the effect of an LXR ligand was assessed in models of allergic airway inflammation. LXR agonist, GW 3965, was profiled in rat and mouse models of allergic asthma. In the Brown Norway rats, GW 3965 (3-30 mg/kg) was unable to reduce the bronchoalveolar lavage eosinophilia associated with this model and had no impact on inflammatory biomarkers (eotaxin and IL-1beta). The compound did significantly stimulate ABCA-1 (ATP-binding cassette A1) mRNA expression, indicating that there was adequate exposure/LXR activation. In the mouse model, the LXR ligand surprisingly increased airway reactivity, an effect that was apparent in both the Ag and nonchallenged groups. This increase was not associated with a change in lung tissue inflammation or number of mucus-containing cells. There was, however, a marked increase in airway smooth muscle thickness in both treated groups. We demonstrated an increase in contractile response to exogenous methacholine in isolated airways taken from LXR agonist-treated animals compared with the relevant control tissue. We corroborated these findings in a human system by demonstrating increased proliferation of cultured airway smooth muscle. This phenomenon, if evidenced in man, would indicate that LXR ligands may directly increase airway reactivity, which could be detrimental, especially in patients with existing respiratory disease and with already compromised lung function.


Subject(s)
Asthma/immunology , Asthma/metabolism , Benzoates/administration & dosage , Benzylamines/administration & dosage , Bronchial Hyperreactivity/metabolism , DNA-Binding Proteins/agonists , Muscle, Smooth/growth & development , Muscle, Smooth/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Up-Regulation/immunology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Asthma/pathology , Asthma/physiopathology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Cell Proliferation/drug effects , DNA-Binding Proteins/physiology , Dose-Response Relationship, Immunologic , Humans , Liver X Receptors , Male , Mice , Mice, Inbred BALB C , Muscle, Smooth/immunology , Orphan Nuclear Receptors , Ovalbumin/administration & dosage , Ovalbumin/immunology , Rats , Rats, Inbred BN , Receptors, Cytoplasmic and Nuclear/physiology , Up-Regulation/drug effects
9.
Mol Endocrinol ; 22(10): 2241-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18669643

ABSTRACT

Classically, activated transcription by nuclear receptors (NRs) is due to a ligand-induced switch from corepressor- to coactivator-bound states. However, coactivators and corepressors recognize overlapping surfaces of liganded and unliganded NRs, respectively. Here we show that, at sufficiently high concentration, the NR corepressor (NCoR) influences the activity of the liver X receptor (LXR) even in the presence of a potent full agonist that destabilizes NCoR binding. Partial agonist ligands that less effectively dissociate NCoR from LXR are even more sensitive to NCoR levels, in a target gene-selective manner. Thus, differential recruitment of NCoR is a major determinant of partial agonism and selective LXR modulation of target genes.


Subject(s)
DNA-Binding Proteins/agonists , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/metabolism , Transcriptional Activation , Benzoates/chemistry , Benzoates/metabolism , Benzylamines/chemistry , Benzylamines/metabolism , Cell Line , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Humans , Hydrocarbons, Fluorinated , Ligands , Liver X Receptors , Molecular Structure , Nuclear Proteins/genetics , Nuclear Receptor Co-Repressor 1 , Orphan Nuclear Receptors , RNA Interference , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Sulfonamides/chemistry , Sulfonamides/metabolism
10.
Mol Endocrinol ; 22(4): 838-57, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18096694

ABSTRACT

Antagonizing the action of the human nuclear xenobiotic receptor pregnane X receptor (PXR) may have important clinical implications in preventing drug-drug interactions and improving therapeutic efficacy. We provide evidence that a naturally occurring phytoestrogen, coumestrol, is an antagonist of the nuclear receptor PXR (NR1I2). In transient transfection assays, coumestrol was able to suppress the agonist effects of SR12813 on human PXR activity. PXR activity was assessed and correlated with effects on the metabolism of the anesthetic tribromoethanol and on gene expression in primary human hepatocytes. We found that coumestrol was able to suppress the effects of PXR agonists on the expression of the known PXR target genes, CYP3A4 and CYP2B6, in primary human hepatocytes as well as inhibit metabolism of tribromoethanol in humanized PXR mice. Coumestrol at concentrations above 1.0 microm competed in scintillation proximity assays with a labeled PXR agonist for binding to the ligand-binding cavity. However, mammalian two-hybrid assays and transient transcription data using ligand-binding-cavity mutant forms of PXR show that coumestrol also antagonizes coregulator recruitment. This effect is likely by binding to a surface outside the ligand-binding pocket. Taken together, these data imply that there are antagonist binding site(s) for coumestrol on the surface of PXR. These studies provide the basis for development of novel small molecule inhibitors of PXR with the ultimate goal of clinical applications toward preventing drug-drug interactions.


Subject(s)
Coumestrol/pharmacology , Phytoestrogens/pharmacology , Receptors, Steroid/antagonists & inhibitors , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Cell Line , Cells, Cultured , Constitutive Androstane Receptor , Coumestrol/chemistry , Coumestrol/metabolism , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Ethanol/analogs & derivatives , Ethanol/metabolism , Female , Gene Expression/drug effects , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Immunohistochemistry , Mass Spectrometry , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Nuclear Receptor Coactivator 1 , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Phytoestrogens/chemistry , Phytoestrogens/metabolism , Pregnane X Receptor , Protein Binding , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques
11.
Comb Chem High Throughput Screen ; 10(4): 239-45, 2007 May.
Article in English | MEDLINE | ID: mdl-17506706

ABSTRACT

Efficient compound selection remains a key challenge in drug discovery today. The goal is to identify developable drug candidates early in the screening process while simultaneously flagging compounds with off-target effects indicative of liabilities or alternate indications. This goal overlaps but is distinct from the goal of toxicogenomics which is focused primarily on identifying toxicity signatures of lead candidates in key tissues. We propose a framework where global changes in gene expression levels in response to compounds can be used as an objective metric for early compound prioritization. We call this metric the Relative Transcription Index (RTI). RTI is a measure of the relative activity of compounds as ascertained by their effects on transcription at a genome-wide level. Compounds with a low RTI affect the expression of only a few genes whereas compounds with a high RTI affect the expression of a large number of genes. This information is useful for differentiating compounds that, based on phenotypic assays alone, may appear to be equally efficacious. Since compounds with high RTI are more likely to display off-target effects, the RTI metric, if implemented early in the screening process, can become a valuable tool for compound selection. The utility of the RTI metric is demonstrated by its application to two different gene expression datasets--one involving modulators of the liver X receptor (LXR) and the other concerning antibacterial compounds belonging to diverse mechanistic classes.


Subject(s)
Anti-Bacterial Agents/chemistry , DNA-Binding Proteins/genetics , Drug Evaluation, Preclinical/methods , Gene Expression , Receptors, Cytoplasmic and Nuclear/genetics , Transcription, Genetic , Algorithms , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cell Line , DNA-Binding Proteins/drug effects , Databases, Genetic , Gene Expression/drug effects , Gene Expression Profiling , Humans , Liver X Receptors , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/drug effects , Transcription, Genetic/drug effects
12.
Shock ; 25(2): 141-6, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16525352

ABSTRACT

Recent reports have demonstrated that liver X receptors (LXRs) of the nuclear receptor family have anti-inflammatory effects on macrophages. Here we examine whether activation of LXR by the synthetic agonist GW3965 can ameliorate the liver injury/dysfunction caused by endotoxins in the rat. Male Wistar rats received GW3965 (0.3 mg/kg) or vehicle (50% dimethyl sulfoxide) 30 min before coadministration of lipopolysaccharide (LPS, 5 mg/kg i.v.) and peptidoglycan (1 mg/kg i.v.). Treatment with GW3965 attenuated the increase in the plasma levels of alanine aminotransferase and bilirubin (markers of liver injury/dysfunction) as well as the focal hepatocyte necrosis (histology) caused by coadministration of LPS and peptidoglycan. This protective effect of GW3965 treatment was associated with reduced infiltration of mast cells in the liver (histopathology) and reduced gene expression of the chemokines eotaxins 1 and 2, whereas MIP-2 mRNA levels were not affected. Plasma levels of tumor necrosis factor alpha and prostaglandin E2 were significantly attenuated by GW3965, whereas plasma interleukins 6 and 10 were not altered. High expression of LXRalpha mRNA was observed in Kupffer cell cultures, suggesting that Kupffer cells are targets of GW3965. Subsequent in vitro studies in Kupffer cells demonstrated that exposure to GW3965 attenuated the LPS-induced release of tumor necrosis factor alpha and prostaglandin E2 in a dose-dependent manner. In conclusion, this study demonstrates that activation of LXR by GW3965 protects against liver injury and dysfunction in a rat model of endotoxemia, in part by exerting an anti-inflammatory effect on Kupffer cells.


Subject(s)
Benzoates/administration & dosage , Benzylamines/administration & dosage , DNA-Binding Proteins/agonists , Endotoxemia/drug therapy , Hepatic Insufficiency/prevention & control , Kupffer Cells/metabolism , Macrophage Activation/drug effects , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Blood Proteins/analysis , DNA-Binding Proteins/metabolism , Dinoprostone/blood , Dose-Response Relationship, Drug , Endotoxemia/blood , Endotoxemia/chemically induced , Endotoxemia/complications , Endotoxemia/pathology , Gene Expression Regulation/drug effects , Hepatic Insufficiency/blood , Hepatic Insufficiency/etiology , Hepatic Insufficiency/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Kupffer Cells/pathology , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Liver/injuries , Liver/pathology , Liver X Receptors , Male , Mast Cells/metabolism , Mast Cells/pathology , Orphan Nuclear Receptors , Rats , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/metabolism
13.
Mol Endocrinol ; 19(5): 1125-34, 2005 May.
Article in English | MEDLINE | ID: mdl-15705662

ABSTRACT

The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 A crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexible loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.


Subject(s)
Antibiotics, Antitubercular/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Rifampin/metabolism , Animals , Antibiotics, Antitubercular/chemistry , Dose-Response Relationship, Drug , Humans , Mice , Mutagenesis, Site-Directed , Mutation , Pregnane X Receptor , Protein Binding , Protein Structure, Tertiary , Rabbits , Rats , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/chemistry , Receptors, Steroid/genetics , Rifampin/chemistry , Species Specificity
15.
J Med Chem ; 48(17): 5419-22, 2005 Aug 25.
Article in English | MEDLINE | ID: mdl-16107141

ABSTRACT

Substituted 3-(phenylamino)-1H-pyrrole-2,5-diones were identified from a high throughput screen as inducers of human ATP binding cassette transporter A1 expression. Mechanism of action studies led to the identification of GSK3987 as an LXR ligand. GSK3987 recruits the steroid receptor coactivator-1 to human LXRalpha and LXRbeta with EC(50)s of 40 nM, profiles as an LXR agonist in functional assays, and activates LXR though a mechanism that is similar to first generation LXR agonists.


Subject(s)
Aniline Compounds/chemical synthesis , DNA-Binding Proteins/agonists , Maleimides/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Binding Sites , Cell Line , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Genes, Reporter , Histone Acetyltransferases , Humans , Ligands , Liver X Receptors , Luciferases/genetics , Maleimides/chemistry , Maleimides/pharmacology , Models, Molecular , Molecular Structure , Monocytes/drug effects , Monocytes/metabolism , Nuclear Receptor Coactivator 1 , Orphan Nuclear Receptors , Promoter Regions, Genetic , Receptors, Cytoplasmic and Nuclear/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism , Up-Regulation
16.
Mol Endocrinol ; 16(6): 1378-85, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12040022

ABSTRACT

The nuclear oxysterol receptors liver X receptor-alpha [LXRalpha (NR1H3)] and LXRbeta (NR1H2) coordinately regulate genes involved in cholesterol homeostasis. Although both LXR subtypes are expressed in the brain, their roles in this tissue remain largely unexplored. In this report, we show that LXR agonists have marked effects on gene expression in murine brain tissue both in vitro and in vivo. In primary astrocyte cultures, LXR agonists regulated several established LXR target genes, including ATP binding cassette transporter A1, and enhanced cholesterol efflux. In contrast, little or no effect on gene expression or cholesterol efflux was detected in primary neuronal cultures. Treatment of mice with a selective LXR agonist resulted in the induction of several LXR target genes related to cholesterol homeostasis in the cerebellum and hippocampus. These data provide the first evidence that the LXRs regulate cholesterol homeostasis in the central nervous system. Because dysregulation of cholesterol balance is implicated in central nervous system diseases such as Alzheimer's and Niemann-Pick disease, pharmacological manipulation of the LXRs may prove beneficial in the treatment of these disorders.


Subject(s)
Central Nervous System/metabolism , Cholesterol/metabolism , Homeostasis , Animals , Cell Line , Gene Expression Regulation , In Situ Hybridization , Mice , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
J Invest Dermatol ; 120(2): 246-55, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12542530

ABSTRACT

Activators of liver X receptors (LXR) stimulate epidermal differentiation and development, but inhibit keratinocyte proliferation. In this study, the anti-inflammatory effects of two oxysterols, 22(R)-hydroxy-cholesterol (22ROH) and 25-hydroxycholesterol (25OH), and a nonsterol activator of LXR, GW3965, were examined utilizing models of irritant and allergic contact dermatitis. Irritant dermatitis was induced by applying phorbol 12-myristate-13-acetate (TPA) to the surface of the ears of CD1 mice, followed by treatment with 22ROH, 25OH, GW3965, or vehicle alone. Whereas TPA treatment alone induced an approximately 2-fold increase in ear weight and thickness, 22ROH, 25OH, or GW3965 markedly suppressed the increase (greater than 50% decrease), and to an extent comparable to that observed with 0.05% clobetasol treatment. Histology also revealed a marked decrease in TPA-induced cutaneous inflammation in oxysterol-treated animals. As topical treatment with cholesterol did not reduce the TPA-induced inflammation, and the nonsterol LXR activator (GW3965) inhibited inflammation, the anti-inflammatory effects of oxysterols cannot be ascribed to a nonspecific sterol effect. In addition, 22ROH did not reduce inflammation in LXRbeta-/- or LXRalphabeta-/- animals, indicating that LXRbeta is required for this anti-inflammatory effect. 22ROH also caused a partial reduction in ear thickness in LXRalpha-/- animals, however (approximately 50% of that observed in wild-type mice), suggesting that this receptor also mediates the anti-inflammatory effects of oxysterols. Both ear thickness and weight increased (approximately 1.5-fold) in the oxazolone-induced allergic dermatitis model, and 22ROH and GW3965 reduced inflammation by approximately 50% and approximately 30%, respectively. Finally, immunohistochemistry demonstrated an inhibition in the production of the pro-inflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha in the oxysterol-treated sites from both TPA- and oxazolone-treated animals. These studies demonstrate that activators of LXR display potent anti-inflammatory activity in both irritant and allergic contact models of dermatitis, requiring the participation of both LXRalpha and LXRbeta. LXR activators could provide a new class of therapeutic agents for the treatment of cutaneous inflammatory disorders.


Subject(s)
Dermatitis, Irritant/immunology , Dermatitis, Irritant/physiopathology , Interleukin-1/biosynthesis , Receptors, Cytoplasmic and Nuclear/genetics , Tumor Necrosis Factor-alpha/biosynthesis , Adjuvants, Immunologic/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Carcinogens/pharmacology , DNA-Binding Proteins , Disease Models, Animal , Epidermis/immunology , Epidermis/physiopathology , Female , Hydroxycholesterols/pharmacology , Liver X Receptors , Male , Mice , Mice, Inbred Strains , Mice, Knockout , Orphan Nuclear Receptors , Oxazolone/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/immunology , Tetradecanoylphorbol Acetate/pharmacology
18.
Curr Opin Drug Discov Devel ; 7(5): 692-702, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15503871

ABSTRACT

The liver X receptors (LXRs), LXRalpha and LXRbeta, are ligand-activated transcription factors of the nuclear receptor superfamily that control the expression of genes involved in cholesterol and fatty acid metabolism. While the identification of small-molecule non-steroidal LXR agonists has validated the LXRs as potential drug targets for cardiovascular disease, recent reports from several research groups suggest that LXR ligands will be valuable therapeutic agents for the treatment of inflammation, diabetes and neurodegenerative diseases. This review focuses on the effects of LXR agonists on relevant signaling pathways, the recently reported ligand-bound LXR crystal structures, and recently disclosed LXR small-molecule templates.


Subject(s)
DNA-Binding Proteins/physiology , Receptors, Cytoplasmic and Nuclear/physiology , DNA-Binding Proteins/agonists , DNA-Binding Proteins/chemistry , Drug Delivery Systems/methods , Drug Design , Humans , Liver X Receptors , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/chemistry , Signal Transduction/drug effects , Signal Transduction/physiology , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/trends
19.
J Med Chem ; 45(10): 1963-6, 2002 May 09.
Article in English | MEDLINE | ID: mdl-11985463

ABSTRACT

A potent, selective, orally active LXR agonist was identified from focused libraries of tertiary amines. GW3965 (12) recruits the steroid receptor coactivator 1 to human LXRalpha in a cell-free ligand-sensing assay with an EC(50) of 125 nM and profiles as a full agonist on hLXRalpha and hLXRbeta in cell-based reporter gene assays with EC(50)'s of 190 and 30 nM, respectively. After oral dosing at 10 mg/kg to C57BL/6 mice, 12 increased expression of the reverse cholesterol transporter ABCA1 in the small intestine and peripheral macrophages and increased the plasma concentrations of HDL cholesterol by 30%. 12 will be a valuable chemical tool to investigate the role of LXR in the regulation of reverse cholesterol transport and lipid metabolism.


Subject(s)
Amines/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Retinoic Acid/agonists , Receptors, Thyroid Hormone/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Administration, Oral , Amines/chemistry , Amines/pharmacology , Animals , Biological Availability , Cell-Free System , Cholesterol/metabolism , Cholesterol, HDL/blood , DNA-Binding Proteins , Genes, Reporter , Humans , Intestine, Small/metabolism , Liver X Receptors , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Orphan Nuclear Receptors , Structure-Activity Relationship , Up-Regulation
20.
Org Lett ; 4(3): 323-6, 2002 Feb 07.
Article in English | MEDLINE | ID: mdl-11820870

ABSTRACT

A solid-phase synthesis of substituted benzopyranoisoxazoles is described. The six-step synthesis features a novel method of generating nitrile oxides on a polymer support followed by an intramolecular 1,3-dipolar cycloaddition with a tethered alkyne for assembly of the benzopyranoisoxazole scaffold. Furthermore, the utilization of single-bead attenuated total reflectance Fourier transform infrared (ATR-IR) microspectroscopy as an essential analytical tool for reaction optimization is highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL