Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Nutr Res Rev ; 35(1): 70-97, 2022 06.
Article in English | MEDLINE | ID: mdl-33926594

ABSTRACT

Cigarette smoke (CS) is likely the most common preventable cause of human morbidity and mortality worldwide. Consequently, inexpensive interventional strategies for preventing CS-related diseases would positively impact health systems. Inhaled CS is a powerful inflammatory stimulus and produces a shift in the normal balance between antioxidants and oxidants, inducing oxidative stress in both the respiratory system and throughout the body. This enduring and systemic pro-oxidative state within the body is reflected by increased levels of oxidative stress and inflammation biomarkers seen in smokers. Smokers might benefit from consuming antioxidant supplements, or a diet rich in fruit and vegetables, which can reduce the CS-related oxidative stress. This review provides an overview of the plasma profile of antioxidants observable in smokers and examines the heterogeneous literature to elucidate and discuss the effectiveness of interventional strategies based on antioxidant supplements or an antioxidant-rich diet to improve the health of smokers. An antioxidant-rich diet can provide an easy-to-implement and cost-effective preventative strategy to reduce the risk of CS-related diseases, thus being one of the simplest ways for smokers to stay in good health for as long as possible. The health benefits attributable to the intake of antioxidants have been observed predominantly when these have been consumed within their natural food matrices in an optimal antioxidant-rich diet, while these preventive effects are rarely achieved with the intake of individual antioxidants, even at high doses.


Subject(s)
Antioxidants , Smokers , Antioxidants/pharmacology , Diet , Dietary Supplements , Humans , Oxidative Stress
2.
J Appl Toxicol ; 42(12): 1948-1961, 2022 12.
Article in English | MEDLINE | ID: mdl-35854198

ABSTRACT

Indoxyl sulphate (IS) is a uremic toxin accumulating in the plasma of chronic kidney disease (CKD) patients. IS accumulation induces side effects in the kidneys, bones and cardiovascular system. Most studies assessed IS effects on cell lines by testing higher concentrations than those measured in CKD patients. Differently, we exposed a human microvascular endothelial cell line (HMEC-1) to the IS concentrations measured in the plasma of healthy subjects (physiological) or CKD patients (pathological). Pathological concentrations reduced cell proliferation rate but did not increase long-term oxidative stress level. Indeed, total protein thiols decreased only after 24 h of exposure in parallel with an increased Nrf-2 protein expression. IS induced actin cytoskeleton rearrangement with formation of stress fibres. Proteomic analysis supported this hypothesis as many deregulated proteins are related to actin filaments organization or involved in the endothelial to mesenchymal transition. Interestingly, two proteins directly linked to cardiovascular diseases (CVD) in in vitro and in vivo studies underwent deregulation: COP9 signalosome complex subunit 9 and thrombomodulin. Future experiments will be needed to investigate the role of these proteins and the signalling pathways in which they are involved to clarify the possible link between CKD and CVD.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Humans , Indican/toxicity , Indican/metabolism , Uremic Toxins , Endothelial Cells/metabolism , Proteomics , Cardiovascular Diseases/metabolism
3.
Int J Mol Sci ; 23(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35269995

ABSTRACT

Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Antioxidants/metabolism , Biomarkers/metabolism , Humans , Kidney Failure, Chronic/therapy , Oxidation-Reduction , Oxidative Stress , Proteins/metabolism , Renal Insufficiency, Chronic/therapy , Sulfhydryl Compounds/chemistry
4.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614132

ABSTRACT

Urea is the uremic toxin accumulating with the highest concentration in the plasma of chronic kidney disease (CKD) patients, not being completely cleared by dialysis. Urea accumulation is reported to exert direct and indirect side effects on the gastrointestinal tract, kidneys, adipocytes, and cardiovascular system (CVS), although its pathogenicity is still questioned since studies evaluating its side effects lack homogeneity. Here, we investigated the effects of physiological and pathological urea concentrations on a human endothelial cell line from the microcirculation (Human Microvascular Endothelial Cells-1, HMEC-1). Urea (5 g/L) caused a reduction in the proliferation rate after 72 h of exposure and appeared to be a potential endothelial-to-mesenchymal transition (EndMT) stimulus. Moreover, urea induced actin filament rearrangement, a significant increase in matrix metalloproteinases 2 (MMP-2) expression in the medium, and a significant up- or down-regulation of other EndMT biomarkers (keratin, fibrillin-2, and collagen IV), as highlighted by differential proteomic analysis. Among proteins whose expression was found to be significantly dysregulated following exposure of HMEC-1 to urea, dimethylarginine dimethylaminohydrolase (DDAH) and vasorin turned out to be down-regulated. Both proteins have been directly linked to cardiovascular diseases (CVD) by in vitro and in vivo studies. Future experiments will be needed to deepen their role and investigate the signaling pathways in which they are involved to clarify the possible link between CKD and CVD.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Humans , Endothelial Cells/metabolism , Urea/pharmacology , Proteomics , Renal Dialysis , Renal Insufficiency, Chronic/metabolism , Proteins/metabolism , Cardiovascular Diseases/metabolism
5.
Anal Biochem ; 618: 114125, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33524411

ABSTRACT

Protein Thiolation Index (PTI) has been recently proposed as a new biomarker of oxidative stress. It is calculated by measuring both free thiols and S-thiolated proteins in plasma with the assumption that this redox ratio is altered by a pro-oxidant stimulus. Here the original protocol was modified and adapted to the use of microvolumes of blood collected by finger prick and down to 3 µl blood was shown to be the lowest volume suitable for this kind of analysis. The new procedure was used to evaluate both the circadian rhythm and the annual fluctuations of PTI in healthy humans.


Subject(s)
Blood Proteins/chemistry , Plasma/chemistry , Sulfhydryl Compounds/chemistry , Adult , Aged , Female , Humans , Male , Middle Aged
6.
J Appl Toxicol ; 41(2): 291-302, 2021 02.
Article in English | MEDLINE | ID: mdl-33107989

ABSTRACT

The use of CuO nanoparticles (NPs) has increased greatly and their potential effects on human health need to be investigated. Differentiated Caco-2 cells were treated from the apical (Ap) and the basolateral (Bl) compartment with different concentrations (0, 10, 50 and 100 µg/mL) of commercial or sonochemically synthesized (sono) CuO NPs. Sono NPs were prepared in ethanol (CuOe) or in water (CuOw), obtaining CuO NPs differing in size and shape. The effects on the Caco-2 cell barrier were assessed via transepithelial electrical resistance (TEER) evaluation just before and after 1, 2 and 24 hours of exposure and through the analysis of cytokine release and biomarkers of oxidative damage to proteins after 24 hours. Sono CuOe and CuOw NPs induced a TEER decrease with a dose-dependent pattern after Bl exposure. Conversely, TEER values were not affected by the Ap exposure to commercial CuO NPs and, concerning the Bl exposure, only the lowest concentration tested (10 µg/mL) caused a TEER decrease after 24 hours of exposure. An increased release of interleukin-8 was induced by sono CuO NPs after the Ap exposure to 100 µg/mL and by sono and commercial CuO after the Bl exposure to all the concentrations. No effects of commercial and sono CuO NPs on interleukin-6 (with the only exception of 100 µg/mL Bl commercial CuO) and tumor necrosis factor-α release were observed. Ap treatment with commercial and CuOw NPs was able to induce significant alterations on specific biomarkers of protein oxidative damage (protein sulfhydryl group oxidation and protein carbonylation).


Subject(s)
Caco-2 Cells/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Copper/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/growth & development , Metal Nanoparticles/toxicity , Humans
7.
Mar Drugs ; 18(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781644

ABSTRACT

Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.


Subject(s)
Fibrillar Collagens/pharmacology , Fibroblasts/physiology , Regenerative Medicine , Sea Urchins/chemistry , Seafood , Skin, Artificial , Tissue Scaffolds , Waste Products , Animals , Cell Culture Techniques , Cell Line , Cell Proliferation , Cell Survival , Cricetinae , Fibrillar Collagens/chemistry , Fibrillar Collagens/isolation & purification , Fibroblasts/metabolism , Food Handling
8.
Dev Biol ; 433(2): 297-309, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29291979

ABSTRACT

Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage.


Subject(s)
Extremities/physiology , Regeneration/physiology , Starfish/physiology , Animals , Collagen/metabolism , Epidermis/ultrastructure , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation , Genetic Association Studies , Microscopy, Electron , Regeneration/genetics , Regeneration/immunology , Species Specificity , Starfish/genetics , Starfish/immunology , Transcription Factors/physiology , Wound Healing/physiology
9.
Cell Biol Toxicol ; 35(4): 345-360, 2019 08.
Article in English | MEDLINE | ID: mdl-30648195

ABSTRACT

Cigarette smoke is a well-established exogenous risk factor containing toxic reactive molecules able to induce oxidative stress, which in turn contributes to smoking-related diseases, including cardiovascular, pulmonary, and oral cavity diseases. We investigated the effects of cigarette smoke extract on human bronchial epithelial cells. Cells were exposed to various concentrations (2.5-5-10-20%) of cigarette smoke extract for 1, 3, and 24 h. Carbonylation was assessed by 2,4-dinitrophenylhydrazine using both immunocytochemical and Western immunoblotting assays. Cigarette smoke induced increasing protein carbonylation in a concentration-dependent manner. The main carbonylated proteins were identified by means of two-dimensional electrophoresis coupled to MALDI-TOF mass spectrometry analysis and database search (redox proteomics). We demonstrated that exposure of bronchial cells to cigarette smoke extract induces carbonylation of a large number of proteins distributed throughout the cell. Proteins undergoing carbonylation are involved in primary metabolic processes, such as protein and lipid metabolism and metabolite and energy production as well as in fundamental cellular processes, such as cell cycle and chromosome segregation, thus confirming that reactive carbonyl species contained in cigarette smoke markedly alter cell homeostasis and functions.


Subject(s)
Bronchi/metabolism , Cigarette Smoking/adverse effects , Epithelial Cells/drug effects , Cell Line , Epithelial Cells/metabolism , Humans , Oxidation-Reduction , Oxidative Stress , Phenylhydrazines/analysis , Protein Carbonylation/drug effects , Proteomics , Smoke , Smoking , Nicotiana
10.
J Appl Toxicol ; 39(8): 1155-1163, 2019 08.
Article in English | MEDLINE | ID: mdl-31017309

ABSTRACT

ZnO nanoparticles (NPs) are widely used nowadays, thus the gastrointestinal exposure to ZnO NPs is likely to be relevant and the effects on the intestinal barrier should be investigated. Polarized Caco-2 cells were exposed from the apical (Ap) and basolateral (Bl) compartments to increasing concentrations (0, 10, 50 and 100 µg/mL) of sonochemical (sono) and commercial ZnO NPs. The transepithelial electrical resistance (TEER), cell viability, proinflammatory cytokine release and presence of protein oxidative damage were evaluated after exposure. TEER was not significantly affected by Ap exposure to either sono or commercial ZnO NPs at any tested concentrations. After Bl exposure to sono ZnO NPs (all the concentrations) and to 100 µg/mL of commercial ZnO NPs TEER was decreased (P < 0.05). Ap and Bl exposure to 100 µg/mL sono ZnO NPs and Ap exposure to 50 µg/mL commercial ZnO NPs induced a significant (P < 0.05) release of interleukin-6. A significant (P < 0.05) release of interleukin-8 was observed after Ap exposure to ZnO NPs at 100 µg/mL and after Bl exposure to sono ZnO NPs at 100 µg/mL. Ap or Bl exposure to sono or commercial ZnO NPs did not affect tumour necrosis factor-alpha secretion or protein sulphydryl oxidation. In conclusion, the ZnO NP exposure from the Ap compartment appeared almost safe, while the exposure through the basal compartment appeared to be more hazardous and the different NP size and crystallinity seem to affect the mode of action, but further studies are necessary to elucidate better these toxicity mechanisms.


Subject(s)
Cytokines/metabolism , Intestinal Mucosa/drug effects , Nanoparticles/toxicity , Transendothelial and Transepithelial Migration/drug effects , Zinc Oxide/toxicity , Caco-2 Cells , Cell Survival/drug effects , Electric Impedance , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Particle Size , Surface Properties , Tumor Necrosis Factor-alpha/metabolism
11.
Anal Biochem ; 538: 38-41, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28939006

ABSTRACT

We have introduced protein thiolation index (PTI), i.e. the molar ratio of the sum of all low molecular mass thiols bound to plasma proteins to protein free cysteinyl residues, as a sensitive biomarker of oxidative stress. According to the original procedure its determination requires a rapid separation of plasma and a specific treatment of samples to stabilize thiols. Here we demonstrate that samples can be collected without use of any anticoagulant to prevent blood clotting and without any stabilization of thiols too. This simplification of the determination of PTI makes its analysis more feasible also in routine clinical laboratories.


Subject(s)
Biomarkers/blood , Blood Chemical Analysis/methods , Blood Proteins/metabolism , Oxidative Stress , Spectrophotometry , Sulfhydryl Compounds/blood , Adult , Aged , Blood Coagulation , Blood Proteins/chemistry , Female , Humans , Male , Middle Aged , Smoking , Young Adult
12.
J Exp Biol ; 220(Pt 4): 615-624, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28202649

ABSTRACT

Organisms have evolved complex defense systems against oxidative stress. Bird eggs contain maternally derived antioxidants that protect embryos from oxidative damage. The antioxidant system components are thought to be integrated, but few studies have analyzed the covariation between antioxidant concentrations, embryo 'oxidative status' and morphology. In addition, no study has tested the effects of experimental change in yolk antioxidant concentration on other antioxidants, on their reciprocal relationships and on their relationships with embryo oxidative status or growth, which are expected if antioxidants defenses are integrated. In yellow-legged gull (Larus michahellis) embryos, we analyzed the covariation between several antioxidants, markers of 'oxidative status' [total antioxidant capacity (TAC), concentration of pro-oxidants (TOS), lipid peroxidation (LPO) and protein carbonylation (PC)] in the yolk, liver and brain, and morphology. Yolk and liver antioxidant concentrations were positively correlated reciprocally and with embryo size, and positively predicted TAC but not oxidative status. TOS and LPO were positively correlated in the liver, while TAC and LPO were negatively correlated in the brain. Weak relationships existed between antioxidants and TOS, PC and LPO. The effects of antioxidants on oxidative status and morphology were non-synergistic. An experimental physiological increase in yolk vitamin E had very weak effects on the relationships between other antioxidants or oxidative status and vitamin E concentration, the concentration of other antioxidants or oxidative status; the covariation between other antioxidants and oxidative status, and relationships between morphology or oxidative status and other antioxidants, challenging the common wisdom of strong functional relationships among antioxidants, at least for embryos in the wild.


Subject(s)
Charadriiformes/embryology , Embryo, Nonmammalian/metabolism , Oxidative Stress , Animals , Antioxidants/metabolism , Charadriiformes/metabolism , Egg Yolk/metabolism , Eggs/analysis , Embryo, Nonmammalian/embryology , Female , Lipid Peroxidation , Protein Carbonylation
13.
Int J Mol Sci ; 18(10)2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28994738

ABSTRACT

The potential toxic effects of silver nanoparticles (AgNPs), administered by a single intratracheal instillation (i.t), was assessed in a rat model using commercial physico-chemical characterized nanosilver. Histopathological changes, overall toxic response and oxidative stress (kidney and plasma protein carbonylation), paralleled by ultrastructural observations (TEM), were evaluated to examine renal responses 7 and 28 days after i.t. application of a low AgNP dose (50 µg/rat), compared to an equivalent dose of ionic silver (7 µg AgNO3/rat). The AgNPs caused moderate renal histopathological and ultrastructural alteration, in a region-specific manner, being the cortex the most affected area. Notably, the bulk AgNO3, caused similar adverse effects with a slightly more marked extent, also triggering apoptotic phenomena. Specifically, 7 days after exposure to both AgNPs and AgNO3, dilatation of the intercapillary and peripheral Bowman's space was observed, together with glomerular shrinkage. At day 28, these effects still persisted after both treatments, accompanied by an additional injury involving the vascular component of the mesangium, with interstitial micro-hemorrhages. Neither AgNPs nor AgNO3 induced oxidative stress effects in kidneys and plasma, at either time point. The AgNP-induced moderate renal effects indicate that, despite their benefits, novel AgNPs employed in consumer products need exhaustive investigation to ensure public health safety.


Subject(s)
Kidney Cortex/drug effects , Kidney/drug effects , Metal Nanoparticles/toxicity , Silver Nitrate/toxicity , Silver/toxicity , Animals , Apoptosis/drug effects , Blood Proteins/metabolism , Bowman Capsule/drug effects , Humans , Ions/toxicity , Kidney/pathology , Kidney/ultrastructure , Kidney Cortex/pathology , Kidney Cortex/ultrastructure , Male , Models, Animal , Oxidative Stress/drug effects , Protein Carbonylation/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
14.
Biochim Biophys Acta ; 1850(1): 1-12, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25280629

ABSTRACT

BACKGROUND: Advanced oxidation protein products (AOPPs) are dityrosine cross-linked and carbonyl-containing protein products formed by the reaction of plasma proteins with chlorinated oxidants, such as hypochlorous acid (HOCl). Most studies consider human serum albumin (HSA) as the main protein responsible for AOPP formation, although the molecular composition of AOPPs has not yet been elucidated. Here, we investigated the relative contribution of HSA and fibrinogen to generation of AOPPs. METHODS: AOPP formation was explored by SDS-PAGE, under both reducing and non-reducing conditions, as well as by analytical gel filtration HPLC coupled to fluorescence detection to determine dityrosine and pentosidine formation. RESULTS: Following exposure to different concentrations of HOCl, HSA resulted to be carbonylated but did not form dityrosine cross-linked high molecular weight aggregates. Differently, incubation of fibrinogen or HSA/fibrinogen mixtures with HOCl at concentrations higher than 150 µM induced the formation of pentosidine and high molecular weight (HMW)-AOPPs (>200 k Da), resulting from intermolecular dityrosine cross-linking. Dityrosine fluorescence increased in parallel with increasing HMW-AOPP formation and increasing fibrinogen concentration in HSA/fibrinogen mixtures exposed to HOCl. This conclusion is corroborated by experiments where dityrosine fluorescence was measured in HOCl-treated human plasma samples containing physiological or supra-physiological fibrinogen concentrations or selectively depleted of fibrinogen, which highlighted that fibrinogen is responsible for the highest fluorescence from dityrosine. CONCLUSIONS: A central role for intermolecular dityrosine cross-linking of fibrinogen in HMW-AOPP formation is shown. GENERAL SIGNIFICANCE: These results highlight that oxidized fibrinogen, instead of HSA, is the key protein for intermolecular dityrosine formation in human plasma.


Subject(s)
Advanced Oxidation Protein Products/metabolism , Cross-Linking Reagents/metabolism , Fibrinogen/metabolism , Tyrosine/analogs & derivatives , Advanced Oxidation Protein Products/blood , Arginine/analogs & derivatives , Arginine/metabolism , Blotting, Western , Dose-Response Relationship, Drug , Humans , Hypochlorous Acid/pharmacology , Lysine/analogs & derivatives , Lysine/metabolism , Molecular Weight , Oxidation-Reduction/drug effects , Protein Carbonylation/drug effects , Serum Albumin/metabolism , Tyrosine/metabolism
15.
J Exp Biol ; 219(Pt 19): 3155-3162, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27473434

ABSTRACT

Flavonoids are the most abundant plant polyphenols, widely occurring in fruits and berries, and show a strong antioxidant activity in vitro Studies of avian species feeding on berries suggest that dietary flavonoids have health-promoting effects and may enhance the expression of melanin-based plumage traits. These effects are probably mediated by the antioxidant activity of flavonoids. However, the effect of dietary flavonoids on oxidative status has never been investigated in any bird species. We analysed the effects of dietary flavonoids on blood non-enzymatic antioxidants and protein oxidative damage of juvenile European blackbirds (Turdus merula). In addition, we analysed the effects of flavonoid-enriched diet on body condition and on the timing of moult from juvenile to adult plumage. Dietary flavonoids did not significantly affect redox status but significantly advanced the onset of moult, hastening plumage development. Moulting birds showed higher protein oxidative damage compared with those that had not yet started moulting. The probability of initiating moult after 40 days of dietary treatment was higher for birds with low circulating levels of oxidizing agents and high glutathione concentration. The metabolization of flavonoids could have altered their redox potential, resulting in no net effects on redox status. However, flavonoid consumption before and during moult may contribute to enhance plumage development. Moreover, our findings suggest that moulting feathers may result in redox imbalance. Given their effect on moult and growth of melanin-rich feathers, fruit flavonoids may have contributed to shape plant fruiting time in relation to fruit consumption preferences by birds.


Subject(s)
Diet , Flavonoids/pharmacology , Molting/drug effects , Passeriformes/growth & development , Animals , Glutathione/metabolism , Models, Biological , Oxidants/metabolism , Oxidation-Reduction/drug effects , Sulfhydryl Compounds/metabolism
16.
Mass Spectrom Rev ; 33(3): 183-218, 2014.
Article in English | MEDLINE | ID: mdl-24272816

ABSTRACT

First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Proteomics/methods , Smoking/adverse effects , Tobacco Smoke Pollution/analysis , Electrophoresis, Gel, Two-Dimensional/methods , Humans , Inflammation/chemically induced , Inflammation/metabolism , Oxidation-Reduction , Proteins/metabolism , Tobacco Smoke Pollution/adverse effects
17.
Blood Cells Mol Dis ; 52(4): 166-74, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24388826

ABSTRACT

Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers.


Subject(s)
Ligands , Serum Albumin/metabolism , Smoke/adverse effects , Smoking/adverse effects , Curcumin/chemistry , Curcumin/metabolism , Genistein/chemistry , Genistein/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Naproxen/chemistry , Naproxen/metabolism , Oxidation-Reduction , Protein Binding , Protein Conformation , Proteolysis , Salicylic Acid/chemistry , Salicylic Acid/metabolism , Serum Albumin/chemistry
18.
Trends Biochem Sci ; 34(2): 85-96, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19135374

ABSTRACT

S-Glutathionylation is the specific post-translational modification of protein cysteine residues by the addition of the tripeptide glutathione, the most abundant and important low-molecular-mass thiol within most cell types. Protein S-glutathionylation is promoted by oxidative or nitrosative stress but also occurs in unstressed cells. It can serve to regulate a variety of cellular processes by modulating protein function and to prevent irreversible oxidation of protein thiols. Recent findings support an essential role for S-glutathionylation in the control of cell-signalling pathways associated with viral infections and with tumour necrosis factor-(-induced apoptosis. Glyceraldehyde-3-phosphate dehydrogenase has recently been implicated in the regulation of endothelin-1 synthesis by a novel, S-glutathionylation-based mechanism involving messenger RNA stability. Moreover, recent studies have identified S-glutathionylation as a redox signalling mechanism in plants.


Subject(s)
Glutathione/metabolism , Protein Processing, Post-Translational/physiology , Animals , Bacterial Proteins/metabolism , Humans , Models, Biological , Oxidation-Reduction , Oxidative Stress , Protein Folding , RNA Stability , Signal Transduction
19.
PLoS One ; 19(5): e0303875, 2024.
Article in English | MEDLINE | ID: mdl-38776331

ABSTRACT

BACKGROUND: It is amply demonstrated that cigarette smoke (CS) has a high impact on lung tumor progression worsening lung cancer patient prognosis and response to therapies. Alteration of immune cell types and functions in smokers' lungs have been strictly related with smoke detrimental effects. However, the role of CS in dictating an inflammatory or immunosuppressive lung microenvironment still needs to be elucidated. Here, we investigated the effect of in vitro exposure to cigarette smoke extract (CSE) focusing on macrophages. METHODS: Immortalized murine macrophages RAW 264.7 cells were cultured in the presence of CS extract and their polarization has been assessed by Real-time PCR and cytofluorimetric analysis, viability has been assessed by SRB assay and 3D-cultures and activation by exposure to Poly(I:C). Moreover, interaction with Lewis lung carcinoma (LLC1) murine cell models in the presence of CS extract were analyzed by confocal microscopy. RESULTS: Obtained results indicate that CS induces macrophages polarization towards the M2 phenotype and M2-phenotype macrophages are resistant to the CS toxic activity. Moreover, CS impairs TLR3-mediated M2-M1 phenotype shift thus contributing to the M2 enrichment in lung smokers. CONCLUSIONS: These findings indicate that, in lung cancer microenvironment of smokers, CS can contribute to the M2-phenotype macrophages prevalence by different mechanisms, ultimately, driving an anti-inflammatory, likely immunosuppressive, microenvironment in lung cancer smokers.


Subject(s)
Lung Neoplasms , Macrophages , Tumor Microenvironment , Animals , Mice , Lung Neoplasms/pathology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Tumor Microenvironment/drug effects , RAW 264.7 Cells , Cell Survival/drug effects , Macrophage Activation/drug effects , Smoke/adverse effects , Cell Polarity/drug effects , Humans , Carcinoma, Lewis Lung/pathology , Carcinoma, Lewis Lung/immunology
20.
Sci Rep ; 13(1): 2326, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759527

ABSTRACT

It is well known that copper oxide nanoparticles (CuO NPs) are heavily toxic on in vitro systems. In human alveolar epithelial cells, the mechanism of toxicity is mostly related to oxidative insults, coming from intracellularly dissolved copper ions, finally leading to apoptotic or autophagic cell death. Our hypothesis is based on possible early oxidative events coming from specific NP surface reactivity able to undermine the cell integrity and to drive cell to death, independently from Lysosomal-Enhanced Trojan Horse mechanism. Two types of CuO NPs, with different oxidative potential, were selected and tested on A549 cells for 1 h and 3 h at 10, 25, 50 and 100 µg/ml. Cells were then analyzed for viability and oxidative change of the proteome. Oxidative by-products were localized by immunocytochemistry and cell-NP interactions characterized by confocal and electron microscopy techniques. The results show that CuO NPs induced oxidative changes soon after 1 h exposure as revealed by the increase in protein carbonylation and reduced-protein-thiol oxidation. In parallel, cell viability significantly decreased, as shown by MTT assay. Such effects were higher for CuO NPs with more crystalline defects and with higher ROS production than for fully crystalline NPs. At these exposure times, although NPs efficiently interacted with cell surface and were taken up by small endocytic vesicles, no ion dissolution was visible inside the lysosomal compartment and no effects were produced by extracellularly dissolved copper ions. In conclusion, a specific NP surface-dependent oxidative cell injury was demonstrated. More detailed studies are required to understand which targets precociously react with CuO NPs, but these results introduce new paradigms for the toxicity of the metal-based NPs, beyond the Lysosomal-Enhanced Trojan horse-related mechanism, and open-up new opportunities to investigate the interactions and effects at the bio-interface for designing safer as well as more effective CuO-based biocides.


Subject(s)
Copper , Metal Nanoparticles , Humans , Copper/chemistry , Reactive Oxygen Species/metabolism , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Oxidative Stress , Protein Carbonylation
SELECTION OF CITATIONS
SEARCH DETAIL