Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Nat Immunol ; 18(8): 826-831, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28722720

ABSTRACT

Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize inflammation in specific organs and tissues.


Subject(s)
Communicable Diseases/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Inflammation/immunology , Acute Disease , Chronic Disease , Humans
4.
Immunity ; 47(6): 1182-1196.e10, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29262351

ABSTRACT

CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology , Bile Acids and Salts/immunology , CD4-Positive T-Lymphocytes/immunology , Crohn Disease/immunology , Ileitis/immunology , Intestinal Mucosa/immunology , ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Acridines/pharmacology , Adult , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Biological Transport , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/pathology , Crohn Disease/genetics , Crohn Disease/pathology , Disease Models, Animal , Female , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Homeostasis/immunology , Humans , Ileitis/genetics , Ileitis/pathology , Ileum/immunology , Ileum/pathology , Immunity, Mucosal , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Oxidative Stress , Signal Transduction , Tetrahydroisoquinolines/pharmacology
5.
Proc Natl Acad Sci U S A ; 119(40): e2208160119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161939

ABSTRACT

Psychological stress has been previously reported to worsen symptoms of inflammatory bowel disease (IBD). Similarly, intestinal tertiary lymphoid organs (TLOs) are associated with more severe inflammation. While there is active debate about the role of TLOs and stress in IBD pathogenesis, there are no studies investigating TLO formation in the context of psychological stress. Our mouse model of Crohn's disease-like ileitis, the SAMP1/YitFc (SAMP) mouse, was subjected to 56 consecutive days of restraint stress (RS). Stressed mice had significantly increased colonic TLO formation. However, stress did not significantly increase small or large intestinal inflammation in the SAMP mice. Additionally, 16S analysis of the stressed SAMP microbiome revealed no genus-level changes. Fecal microbiome transplantation into germ-free SAMP mice using stool from unstressed and stressed mice replicated the behavioral phenotype seen in donor mice. However, there was no difference in TLO formation between recipient mice. Stress increased the TLO formation cytokines interleukin-23 (IL-23) and IL-22 followed by up-regulation of antimicrobial peptides. SAMP × IL-23r-/- (knockout [KO]) mice subjected to chronic RS did not have increased TLO formation. Furthermore, IL-23, but not IL-22, production was increased in KO mice, and administration of recombinant IL-22 rescued TLO formation. Following secondary colonic insult with dextran sodium sulfate, stressed mice had reduced colitis on both histology and colonoscopy. Our findings demonstrate that psychological stress induces colonic TLOs through intrinsic alterations in IL-23 signaling, not through extrinsic influence from the microbiome. Furthermore, chronic stress is protective against secondary insult from colitis, suggesting that TLOs may function to improve the mucosal barrier.


Subject(s)
Colitis , Crohn Disease , Animals , Cytokines , Dextran Sulfate/toxicity , Dextrans , Disease Models, Animal , Inflammation , Interleukin-23 , Mice , Mice, Knockout , Phenylmercury Compounds
6.
Gut ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39266053

ABSTRACT

TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain receptor 3 (DR3), are members of the TNF and TNFR superfamilies, respectively, with recognised roles in regulating innate and adaptive immune responses; additional existence of a decoy receptor, DcR3, indicates a tightly regulated cytokine system. The significance of TL1A:DR3 signalling in the pathogenesis of inflammatory bowel disease (IBD) is supported by several converging lines of evidence. Herein, we aim to provide a comprehensive understanding of what is currently known regarding the TL1A/DR3 system in the context of IBD. TL1A and DR3 are expressed by cellular subsets with important roles for the initiation and maintenance of intestinal inflammation, serving as potent universal costimulators of effector immune responses, indicating their participation in the pathogenesis of IBD. Recent evidence also supports a homoeostatic role for TL1A:DR3 via regulation of Tregs and innate lymphoid cells. TL1A and DR3 are also expressed by stromal cells and may contribute to inflammation-induced or inflammation-independent intestinal fibrogenesis. Finally, discovery of genetic polymorphisms with functional consequences may allow for patient stratification, including differential responses to TL1A-targeted therapeutics. In conclusion, TL1A:DR3 signalling plays a central and multifaceted role in the immunological pathways that underlie intestinal inflammation, such as that observed in IBD. Such evidence provides the foundation for developing pharmaceutical approaches targeting this ligand-receptor pair in IBD.

7.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37527009

ABSTRACT

SUMMARY: Microbiome research is now moving beyond the compositional analysis of microbial taxa in a sample. Increasing evidence from large human microbiome studies suggests that functional consequences of changes in the intestinal microbiome may provide more power for studying their impact on inflammation and immune responses. Although 16S rRNA analysis is one of the most popular and a cost-effective method to profile the microbial compositions, marker-gene sequencing cannot provide direct information about the functional genes that are present in the genomes of community members. Bioinformatic tools have been developed to predict microbiome function with 16S rRNA gene data. Among them, PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) has become one of the most popular functional profile prediction tools, which generates community-wide pathway abundances. However, no state-of-art inference tools are available to test the differences in pathway abundances between comparison groups. We have developed ggpicrust2, an R package, for analyzing functional profiles derived from 16S rRNA sequencing. This powerful tool enables researchers to conduct extensive differential abundance analyses and generate visually appealing visualizations that effectively highlight functional signals. With ggpicrust2, users can obtain publishable results and gain deeper insights into the functional composition of their microbial communities. AVAILABILITY AND IMPLEMENTATION: The package is open-source under the MIT and file license and is available at CRAN and https://github.com/cafferychen777/ggpicrust2. Its shiny web is available at https://a95dps-caffery-chen.shinyapps.io/ggpicrust2_shiny/.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Software , RNA, Ribosomal, 16S/genetics , Phylogeny
9.
Gut ; 72(9): 1642-1650, 2023 09.
Article in English | MEDLINE | ID: mdl-37339849

ABSTRACT

BACKGROUND: Several randomised clinical trials (RCTs) performing faecal microbiota transplantation (FMT) for the management of inflammatory bowel disease (IBD), particularly for ulcerative colitis, have recently been published, but with major variations in study design. These include differences in administered dose, route and frequency of delivery, type of placebo and evaluated endpoints. Although the overall outcomes appear to be promising, they are highly dependent on both donor and recipient factors. OBJECTIVE: To develop concensus-based statements and recommendations for the evaluation, management and potential treatment of IBD using FMT in order to move towards standardised practices. DESIGN: An international panel of experts convened several times to generate evidence-based guidelines by performing a deep evaluation of currently available and/or published data. Twenty-five experts in IBD, immunology and microbiology collaborated in different working groups to provide statements on the following key issues related to FMT in IBD: (A) pathogenesis and rationale, (B) donor selection and biobanking, (C) FMT practices and (D) consideration of future studies and perspectives. Statements were evaluated and voted on by all members using an electronic Delphi process, culminating in a plenary consensus conference and generation of proposed guidelines. RESULTS AND CONCLUSIONS: Our group has provided specific statements and recommendations, based on best available evidence, with the end goal of providing guidance and general criteria required to promote FMT as a recognised strategy for the treatment of IBD.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Fecal Microbiota Transplantation/methods , Rome , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Colitis, Ulcerative/therapy , Treatment Outcome
10.
Gastrointest Endosc ; 97(4): 752-758.e2, 2023 04.
Article in English | MEDLINE | ID: mdl-36343674

ABSTRACT

BACKGROUND AND AIMS: Distinguishing Crohn's disease (CD) from ulcerative colitis (UC) may be difficult when the disease is limited to the colon. Transmural healing is an important adjunctive measure of inflammatory bowel disease activity. The aim of this study was to examine the role of EUS in differentiating CD versus UC and evaluating transmural disease activity. METHODS: This prospective cohort study enrolled 20 patients with CD (10 active [aCD], 10 inactive), 20 patients with UC (10 active [aUC], 10 inactive), and 20 control subjects who underwent colonoscopy from 2019 to 2021 at a tertiary care center. Measurements of bowel wall layer thickness from the rectum and cecum were obtained using a through-the-scope US catheter (UM-3R-3; Olympus, Center Valley, Penn, USA) at the time of colonoscopy. RESULTS: Compared with control subjects, patients with aCD had thicker rectal submucosa and total wall layer (submucosa median, 1.80 mm [interquartile range {IQR}, 1.40-2.00] vs .60 mm [IQR, .40-.70]; total wall median, 3.70 mm [IQR, 3.52-4.62] vs 2.10 mm [IQR, 1.70-2.40], respectively; P < .01). Similar significant findings were observed for the cecal wall layers. Compared with control subjects, patients with aUC had thicker rectal mucosa and total wall but not submucosa or muscularis propria layers (mucosa median, 1.35 mm [IQR, 1.12-1.47] vs .60 mm [IQR, .57-.70]; total wall median, 3.45 mm [IQR, 2.85-3.75] vs 2.10 mm [IQR, 1.70-2.40], respectively; P < .01). Patients with aCD compared with those with aUC had a significantly thicker rectal submucosa layer (median, 1.80 mm [IQR, 1.40-2.00] vs .55 mm [IQR, .40-.75], respectively, P < .01). Cutoff values of 1.1 mm for rectal submucosa in CD (sensitivity, 1.0; specificity, 1.0) and 1.1 mm for rectal mucosa in UC (sensitivity, .8; specificity, .9) were found to differentiate active from inactive disease. CONCLUSIONS: EUS measurements of colon wall layers can help diagnose aCD versus aUC and assess transmural disease activity. (Clinical trial registration number: NCT03863886.).


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/diagnostic imaging , Crohn Disease/diagnostic imaging , Inflammatory Bowel Diseases/diagnostic imaging , Prospective Studies , Case-Control Studies
11.
Gastroenterology ; 160(1): 302-316.e7, 2021 01.
Article in English | MEDLINE | ID: mdl-33010253

ABSTRACT

BACKGROUND & AIMS: Interleukin (IL)33/IL1F11 is an important mediator for the development of type 2 T-helper cell (Th2)-driven inflammatory disorders and has also been implicated in the pathogenesis of gastrointestinal (GI)-related cancers, including gastric carcinoma. We therefore sought to mechanistically determine IL33's potential role as a critical factor linking chronic inflammation and gastric carcinogenesis using gastritis-prone SAMP1/YitFc (SAMP) mice. METHODS: SAMP and (parental control) AKR mice were assessed for baseline gastritis and progression to metaplasia. Expression/localization of IL33 and its receptor, ST2/IL1R4, were characterized in corpus tissues, and activation and neutralization studies were both performed targeting the IL33/ST2 axis. Dissection of immune pathways leading to metaplasia was evaluated, including eosinophil depletion studies using anti-IL5/anti-CCR3 treatment. RESULTS: Progressive gastritis and, ultimately, intestinalized spasmolytic polypeptide-expressing metaplasia (SPEM) was detected in SAMP stomachs, which was absent in AKR but could be moderately induced with exogenous, recombinant IL33. Robust peripheral (bone marrow) expansion of eosinophils and local recruitment of both eosinophils and IL33-expressing M2 macrophages into corpus tissues were evident in SAMP. Interestingly, IL33 blockade did not affect bone marrow-derived expansion and local infiltration of eosinophils, but markedly decreased M2 macrophages and SPEM features, while eosinophil depletion caused a significant reduction in both local IL33-producing M2 macrophages and SPEM in SAMP. CONCLUSIONS: IL33 promotes metaplasia and the sequelae of eosinophil-dependent downstream infiltration of IL33-producing M2 macrophages leading to intestinalized SPEM in SAMP, suggesting that IL33 represents a critical link between chronic gastritis and intestinalizing metaplasia that may serve as a potential therapeutic target for preneoplastic conditions of the GI tract.


Subject(s)
Gastritis/etiology , Gastritis/pathology , Interleukin-33/physiology , Stomach Neoplasms/etiology , Stomach Neoplasms/pathology , Animals , Chronic Disease , Disease Models, Animal , Eosinophils , Gastric Mucosa/pathology , Metaplasia , Mice
12.
Eur J Nutr ; 61(6): 2853-2871, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35230477

ABSTRACT

PURPOSE: Maltodextrin (MDX) is a polysaccharide food additive commonly used as oral placebo/control to investigate treatments/interventions in humans. The aims of this study were to appraise the MDX effects on human physiology/gut microbiota, and to assess the validity of MDX as a placebo-control. METHODS: We performed a systematic review of randomized-placebo-controlled clinical trials (RCTs) where MDX was used as an orally consumed placebo. Data were extracted from study results where effects (physiological/microbial) were attributed (or not) to MDX, and from study participant outcomes data, before-and-after MDX consumption, for post-publication 're-analysis' using paired-data statistics. RESULTS: Of two hundred-sixteen studies on 'MDX/microbiome', seventy RCTs (n = 70) were selected for analysis. Supporting concerns regarding the validity of MDX as a placebo, the majority of RCTs (60%, CI 95% = 0.48-0.76; n = 42/70; Fisher-exact p = 0.001, expected < 5/70) reported MDX-induced physiological (38.1%, n = 16/42; p = 0.005), microbial metabolite (19%, n = 8/42; p = 0.013), or microbiome (50%, n = 21/42; p = 0.0001) effects. MDX-induced alterations on gut microbiome included changes in the Firmicutes and/or Bacteroidetes phyla, and Lactobacillus and/or Bifidobacterium species. Effects on various immunological, inflammatory markers, and gut function/permeability were also documented in 25.6% of the studies (n = 10/42). Notably, there was considerable variability in the direction of effects (decrease/increase), MDX dose, form (powder/pill), duration, and disease/populations studied. Overall, only 20% (n = 14/70; p = 0.026) of studies cross-referenced MDX as a justifiable/innocuous placebo, while 2.9% of studies (n = 2/70) acknowledged their data the opposite. CONCLUSION: Orally-consumed MDX often (63.9% of RCTs) induces effects on human physiology/gut microbiota. Such effects question the validity of MDX as a placebo-control in human clinical trials.


Subject(s)
Food Additives , Gastrointestinal Microbiome , Bifidobacterium , Food Additives/pharmacology , Humans , Polysaccharides/pharmacology
13.
Proc Natl Acad Sci U S A ; 116(52): 26717-26726, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843928

ABSTRACT

Crohn's disease and ulcerative colitis are chronic and progressive inflammatory bowel diseases (IBDs) that are attributed to dysregulated interactions between the gut microbiome and the intestinal mucosa-associated immune system. There are limited studies investigating the role of either IL-1α or IL-1ß in mouse models of colitis, and no clinical trials blocking either IL-1 have yet to be performed. In the present study, we show that neutralization of IL-1α by a specific monoclonal antibody against murine IL-1α was highly effective in reducing inflammation and damage in SAMP mice, mice that spontaneously develop a Crohn's-like ileitis. Anti-mouse IL-1α significantly ameliorated the established, chronic ileitis and also protected mice from developing acute DSS-induced colitis. Both were associated with taxonomic divergence of the fecal gut microbiome, which was treatment-specific and not dependent on inflammation. Anti-IL-1α administration led to a decreased ratio of Proteobacteria to Bacteroidetes, decreased presence of Helicobacter species, and elevated representation of Mucispirillum schaedleri and Lactobacillus salivarius. Such modification in flora was functionally linked to the antiinflammatory effects of IL-1α neutralization, as blockade of IL-1α was not effective in germfree SAMP mice. Furthermore, preemptive dexamethasone treatment of DSS-challenged SAMP mice led to changes in flora composition without preventing the development of colitis. Thus, neutralization of IL-1α changes specific bacterial species of the intestinal microbiome, which is linked to its antiinflammatory effects. These functional findings may be of significant value for patients with IBD, who may benefit from targeted IL-1α-based therapies.

14.
Clin Gastroenterol Hepatol ; 19(12): 2469-2480, 2021 12.
Article in English | MEDLINE | ID: mdl-32949730

ABSTRACT

The development of Crohn's disease (CD) is characterized by a breakdown of homeostatic immune-bacterial communication, which takes place at the intestinal mucosa when environmental triggers impact genetically predisposed individuals. Converging lines of evidence support the hypothesis that this pathogenetic model develops through sequential, although inter-related, steps that indicate failure of mucosal defense mechanisms at various stages. In this context, immunologic phenomena that mediate the initial appearance of inflammatory lesions across the intestinal tissue may differ substantially from those that mediate and perpetuate chronic inflammatory responses. A compromise in the integrity of the epithelial barrier is among the earliest events and leads to accelerated influx of intraluminal antigens and intact microorganisms within the immunologically rich lamina propria. Inadequate clearance of invading microorganisms also may occur as a result of defects in innate immunity, preventing the timely and complete resolution of acute inflammatory responses. The final step is the development of persistent adaptive responses, which also differ between early and late Crohn's disease. Current progress in our ability to delineate single-cell transcriptomics and proteomics has allowed the discovery of cellular and molecular mechanisms that participate in each sequential step of CD development. This not only will advance our understanding of CD pathogenesis, but also facilitate the design of targeted therapeutic approaches.


Subject(s)
Crohn Disease , Genetic Predisposition to Disease , Humans , Immunity, Innate , Intestinal Mucosa , Intestines
15.
J Nutr ; 151(3): 579-590, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33484150

ABSTRACT

BACKGROUND: The current nutritional composition of the "American diet" (AD; also known as Western diet) has been linked to the increasing incidence of chronic diseases, including inflammatory bowel disease (IBD), namely Crohn disease (CD). OBJECTIVES: This study investigated which of the 3 major macronutrients (protein, fat, carbohydrates) in the AD has the greatest impact on preventing chronic inflammation in experimental IBD mouse models. METHODS: We compared 5 rodent diets designed to mirror the 2011-2012 "What We Eat in America" NHANES. Each diet had 1 macronutrient dietary source replaced. The formulated diets were AD, AD-soy-pea (animal protein replaced by soy + pea protein), AD-CHO ("refined carbohydrate" by polysaccharides), AD-fat [redistribution of the ω-6:ω-3 (n-6:n-3) PUFA ratio; ∼10:1 to 1:1], and AD-mix (all 3 "healthier" macronutrients combined). In 3 separate experiments, 8-wk-old germ-free SAMP1/YitFC mice (SAMP) colonized with human gut microbiota ("hGF-SAMP") from CD or healthy donors were fed an AD, an AD-"modified," or laboratory rodent diet for 24 wk. Two subsequent dextran sodium sulfate-colitis experiments in hGF-SAMP (12-wk-old) and specific-pathogen-free (SPF) C57BL/6 (20-wk-old) mice, and a 6-wk feeding trial in 24-wk-old SPF SAMP were performed. Intestinal inflammation, gut metagenomics, and MS profiles were assessed. RESULTS: The AD-soy-pea diet resulted in lower histology scores [mean ± SD (56.1% ± 20.7% reduction)] in all feeding trials and IBD mouse models than did other diets (P < 0.05). Compared with the AD, the AD-soy-pea correlated with increased abundance in Lactobacillaceae and Leuconostraceae (1.5-4.7 log2 and 3.0-5.1 log2 difference, respectively), glutamine (6.5 ± 0.8 compared with 3.9 ± 0.3 ng/µg stool, P = 0.0005) and butyric acid (4:0; 3.3 ± 0.5 compared with 2.54 ± 0.4 ng/µg stool, P = 0.006) concentrations, and decreased linoleic acid (18:2n-6; 5.4 ± 0.4 compared with 8.6 ± 0.3 ng/µL plasma, P = 0.01). CONCLUSIONS: Replacement of animal protein in an AD by plant-based sources reduced the severity of experimental IBD in all mouse models studied, suggesting that similar, feasible adjustments to the daily human diet could help control/prevent IBD in humans.


Subject(s)
Dietary Proteins/administration & dosage , Gastrointestinal Microbiome/physiology , Glycine max , Ileitis/prevention & control , Pisum sativum , Amino Acids/chemistry , Amino Acids/metabolism , Animal Feed , Animals , Bacteroidetes , Colitis/chemically induced , Colitis/prevention & control , Dextran Sulfate , Diet/veterinary , Dietary Carbohydrates , Dietary Fats , Feces/chemistry , Female , Firmicutes , Humans , Male , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
16.
Brain Behav Immun ; 98: 245-250, 2021 11.
Article in English | MEDLINE | ID: mdl-34403735

ABSTRACT

Patients with inflammatory bowel disease (IBD) are particularly susceptible to behavioral diagnoses, and the microbiome has been repeatedly implicated in the pathogenesis of IBD. The intestinal microbiome's ability to affect behavior has become increasingly recognized and studied. The so-called 'psychobiome' has been linked to a plethora of neurological and psychological diagnoses, including autism and Parkinson's disease. Despite the ability of many bacterial species within the human intestinal microbiome to synthesize neurotransmitters, it has never been previously reported that a single bacterial species is sufficient to induce depression. Here, we demonstrate that our mouse model of Crohn's disease (CD)-like ileitis, the SAMP1/YitFc (SAMP1), does not exhibit baseline behavioral abnormalities. By comparison, SAMP6 mice develop depressive-like behavior that is associated with a rise in the GABA-producing bacterial genus Parabacteroides. We finally demonstrate that administration of Parabacteroides distasonis into our SAMP1 mice induces depressive-like behavior. Colonization with P. distasonis was not associated with increased intestinal inflammation or alterations in other measures of behavior. The intestinal environment of CD may be particularly conducive to colonization with P. distasonis and subsequent induction of depressive-like behavior. To our knowledge, this is the first report of a bacterial species specifically inducing depressive-like behavior.


Subject(s)
Crohn Disease , Ileitis , Animals , Bacteroidetes , Disease Models, Animal , Humans , Mice
17.
Proc Natl Acad Sci U S A ; 115(40): E9362-E9370, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224451

ABSTRACT

Defective and/or delayed wound healing has been implicated in the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease (IBD). The resolution of inflammation is particularly important in mucosal organs, such as the gut, where restoration of epithelial barrier function is critical to reestablish homeostasis with the interfacing microenvironment. Although IL-33 and its receptor ST2/ILRL1 are known to be increased and associated with IBD, studies using animal models of colitis to address the mechanism have yielded ambiguous results, suggesting both pathogenic and protective functions. Unlike those previously published studies, we focused on the functional role of IL-33/ST2 during an extended (2-wk) recovery period after initial challenge in dextran sodium sulfate (DSS)-induced colitic mice. Our results show that during acute, resolving colitis the normal function of endogenous IL-33 is protection, and the lack of either IL-33 or ST2 impedes the overall recovery process, while exogenous IL-33 administration during recovery dramatically accelerates epithelial restitution and repair, with concomitant improvement of colonic inflammation. Mechanistically, we show that IL-33 stimulates the expression of a network of microRNAs (miRs) in the Caco2 colonic intestinal epithelial cell (IEC) line, especially miR-320, which is increased by >16-fold in IECs isolated from IL-33-treated vs. vehicle-treated DSS colitic mice. Finally, IL-33-dependent in vitro proliferation and wound closure of Caco-2 IECs is significantly abrogated after specific inhibition of miR-320A. Together, our data indicate that during acute, resolving colitis, IL-33/ST2 plays a crucial role in gut mucosal healing by inducing epithelial-derived miR-320 that promotes epithelial repair/restitution and the resolution of inflammation.


Subject(s)
Colitis/metabolism , Inflammatory Bowel Diseases/metabolism , Interleukin-33/metabolism , Intestinal Mucosa/physiology , MicroRNAs/metabolism , Regeneration , Acute Disease , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Dextran Sulfate/toxicity , Humans , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/genetics , Mice , Mice, Knockout , MicroRNAs/genetics
18.
Int J Mol Sci ; 22(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638616

ABSTRACT

Crohn's disease (CD) is a chronic disorder characterized by full thickness patchy inflammation of the gastrointestinal tract. The pathogenesis is multifactorial and involves defective innate immune responses, microbiome alterations, and dysregulated activation of the acquired component of mucosal immunity. One of the molecular mediators that is involved at different levels in the initiation and progression of intestinal inflammation characteristic of CD is tumor necrosis factor (TNF). The present manuscript provides a comprehensive review focused on the potential role of TNF in the different phases of CD pathogenesis, particularly in light of its potential clinical implications. Currently available drugs blocking TNF are evaluated and discussed, specifically for open issues that still remain utilizing such therapy. TNF exerts a paramount role in the established phase of intestinal inflammation that characterizes CD patients, and anti-TNF biologics have definitely changed patient management, offering effective and safe options of treatment. Nonetheless, many patients still do not respond to anti-TNF therapy or experience unwanted side-effects. This could partially be due to the role that TNF plays in intestinal homeostasis that is particularly important during the early phase of the inflammatory process. In fact, emerging evidence supporting the dichotomous role of TNF and the identification of molecular markers will guide a more tailored and refined therapy for CD patients in the near future.


Subject(s)
Crohn Disease/immunology , Crohn Disease/therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/immunology , Adalimumab/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Certolizumab Pegol/therapeutic use , Crohn Disease/etiology , Humans , Immunosuppressive Agents/therapeutic use , Infliximab/therapeutic use , Molecular Targeted Therapy/methods
19.
Int J Mol Sci ; 21(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340123

ABSTRACT

(1) Background: Colorectal cancer (CRC) is among the best examples of the relationship between inflammation and increased cancer risk. (2) Methods: To examine the effects of spontaneous low-grade chronic inflammation on the pathogenesis of CRC, we developed a new murine model of colitis-associated cancer (CAC) by crossing Mucin 2 mutated mice (Winnie) with ApcMin/+ mice. (3) Results: The resulting Winnie-ApcMin/+ model combines an inflammatory background with a genetic predisposition to small intestinal polyposis. Winnie-ApcMin/+ mice show an early occurrence of inflammatory signs and dysplastic lesions in the distal colon with a specific molecular signature. (4) Conclusion: The Winnie-ApcMin/+ model is a perfect model to demonstrate that chronic inflammation represents a crucial risk factor for the onset and progression of tumoral lesions in individuals genetically predisposed to CRC.


Subject(s)
Colitis-Associated Neoplasms/etiology , Disease Susceptibility , Genes, APC , Animals , Apoptosis/genetics , Biopsy , Cell Proliferation , Cytoskeleton , Disease Models, Animal , Disease Progression , Genetic Predisposition to Disease , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Neoplasm Grading
SELECTION OF CITATIONS
SEARCH DETAIL