Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38508712

ABSTRACT

The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories. In the present study, we have examined juvenile male and female zebrafish and show that SWR events are intrinsically generated and maintained within the telencephalon and that their hippocampal homolog, the anterodorsolateral lobe (ADL), exhibits SW events with ∼9% containing an embedded ripple (SWR). Single-cell calcium imaging coupled to local field potential recordings revealed that ∼10% of active cells in the dorsal telencephalon participate in any given SW event. Furthermore, fluctuations in cholinergic tone modulate SW events consistent with mammalian studies. Moreover, the basolateral amygdala (BLA) homolog exhibits SW events with ∼5% containing an embedded ripple. Computing the SW peak coincidence difference between the ADL and BLA showed bidirectional communication. Simultaneous coupling occurred more frequently within the same hemisphere, and in coupled events across hemispheres, the ADL more commonly preceded BLA. Together, these data suggest conserved mechanisms across species by which SW and SWR events are modulated, and memories may be transferred and consolidated through regional coupling.


Subject(s)
Hippocampus , Zebrafish , Animals , Male , Hippocampus/physiology , Female , Amygdala/physiology , Action Potentials/physiology , Brain Waves/physiology
2.
J Neurochem ; 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38163875

ABSTRACT

Resveratrol, a naturally occurring polyphenol that activates sirtuin 1 (SIRT1), has been shown to reduce overall levels of matrix metalloprotease-9 (MMP-9) in cerebrospinal fluid (CSF) samples from patients with Alzheimer's dementia (AD). Depending on the site of release, however, MMP-9 has the potential to improve or impair cognition. In particular, its release from microglia or pericytes proximal to the blood brain barrier can damage the basement membrane, while neuronal activity-dependent release of this protease from glutamatergic neurons can instead promote dendritic spine expansion and long-term potentiation of synaptic plasticity. In the present study, we test the hypothesis that resveratrol reduces overall MMP-9 levels in CSF samples from patients with APOE4, an allele associated with increased glial inflammation. We also examine the possibility that resveratrol reduces inflammation-associated MMP release from cultured glia but spares neuronal activity-dependent release from cultured cortical neurons. We observe that resveratrol decreases overall levels of MMP-2 and MMP-9 in CSF samples from AD patients. Resveratrol also reduces CSF levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), glial-derived protein that restricts long-term potentiation of synaptic transmission, in individuals homozygous for APOE4. Consistent with these results, we observe that resveratrol reduces basal and lipopolysaccharide (LPS)-stimulated MMP and TIMP-1 release from cultured microglia and astrocytes. In contrast, however, resveratrol does not inhibit release of MMP-9 from cortical neurons. Overall, these results are consistent with the possibility that while resveratrol reduces potentially maladaptive MMP and TIMP-1 release from activated glia, neuroplasticity-promoting MMP release from neurons is spared. In contrast, resveratrol reduces release of neurocan and brevican, extracellular matrix components that restrict neuroplasticity, from both neurons and glia. These data underscore the diversity of resveratrol's actions with respect to affected cell types and molecular targets and also suggest that further studies may be warranted to determine if its effects on glial MMP release could make it a useful adjunct for AD- and/or anti-amyloid therapy-related damage to the blood brain barrier.

3.
Eur J Neurosci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844747

ABSTRACT

Despite widespread use of combination antiretroviral therapy (cART), there remains a subset of individuals who display cognitive impairment broadly known as HIV-associated neurocognitive disorder (HAND). Interestingly, HIV-infected cells continuously release the HIV-1 protein Tat even in the presence of cART. Persistent exposure to Tat is proposed to increase both neuroinflammation and neurotoxicity. In vitro evidence shows that matrix metalloproteinases (MMPs) are among the neuroinflammatory molecules induced by Tat, which are known to disrupt specialized neuronal extracellular matrix structures called perineuronal nets (PNNs). PNNs predominantly surround parvalbumin interneurons and help to buffer these cells from oxidant stress and to independently increase their excitability. In order to better understand the link between short-term exposure to Tat, neuroinflammation, and PNNs, we explored the direct effects of Tat on glial cells and neurons. Herein, we report that in mixed glial cultures, Tat directly increases the expression of proinflammatory molecules, including MMP-9. Moreover, direct injection of Tat protein into mouse hippocampus increases the expression of astrocyte and microglia markers as well as MMP-9. The number of PNNs is decreased following Tat exposure, followed later by decreased numbers of hippocampal parvalbumin-expressing neurons. In older mice, Tat induced significant increases in the gene expression of proinflammatory molecules including markers of gliosis, MMPs and complement system proteins. Taken together, these data support a direct effect of Tat on glial-derived MMP expression subsequently affecting PNNs and neuronal health, with older mice more susceptible to Tat-induced inflammation.

4.
Neurobiol Dis ; 179: 106057, 2023 04.
Article in English | MEDLINE | ID: mdl-36878326

ABSTRACT

The APOE4 allele increases the risk for Alzheimer's disease (AD) in a dose-dependent manner and is also associated with cognitive decline in non-demented elderly controls. In mice with targeted gene replacement (TR) of murine APOE with human APOE3 or APOE4, the latter show reduced neuronal dendritic complexity and impaired learning. APOE4 TR mice also show reduced gamma oscillation power, a neuronal population activity which is important to learning and memory. Published work has shown that brain extracellular matrix (ECM) can reduce neuroplasticity as well as gamma power, while attenuation of ECM can instead enhance this endpoint. In the present study we examine human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 individuals and brain lysates from APOE3 and APOE4 TR mice for levels of ECM effectors that can increase matrix deposition and restrict neuroplasticity. We find that CCL5, a molecule linked to ECM deposition in liver and kidney, is increased in CSF samples from APOE4 individuals. Levels of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the activity of ECM-degrading enzymes, are also increased in APOE4 CSF as well as astrocyte supernatants brain lysates from APOE4 TR mice. Importantly, as compared to APOE4/wild-type heterozygotes, APOE4/CCR5 knockout heterozygotes show reduced TIMP levels and enhanced EEG gamma power. The latter also show improved learning and memory, suggesting that the CCR5/CCL5 axis could represent a therapeutic target for APOE4 individuals.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Mice , Humans , Animals , Aged , Apolipoprotein E4/genetics , Memory, Short-Term , Apolipoprotein E3/genetics , Mice, Transgenic , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Receptors, CCR5
5.
J Neurosci ; 40(22): 4418-4431, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32269106

ABSTRACT

Emerging evidence suggests that there is a reduction in overall cortical excitatory to inhibitory balance in major depressive disorder (MDD), which afflicts ∼14%-20% of individuals. Reduced pyramidal cell arborization occurs with stress and MDD, and may diminish excitatory neurotransmission. Enhanced deposition of perineuronal net (PNN) components also occurs with stress. Since parvalbumin-expressing interneurons are the predominant cell population that is enveloped by PNNs, which enhance their ability to release GABA, excess PNN deposition likely increases pyramidal cell inhibition. In the present study, we investigate the potential for matrix metalloprotease-9 (MMP-9), an endopeptidase secreted in response to neuronal activity, to contribute to the antidepressant efficacy of the serotonin/norepinephrine reuptake inhibitor venlafaxine in male mice. Chronic venlafaxine increases MMP-9 levels in murine cortex, and increases both pyramidal cell arborization and PSD-95 expression in the cortex of WT but not MMP-9-null mice. We have previously shown that venlafaxine reduces PNN deposition and increases the power of ex vivo γ oscillations in conventionally housed mice. γ power is increased with pyramidal cell disinhibition and with remission from MDD. Herein we observe that PNN expression is increased in a corticosterone-induced stress model of disease and reduced by venlafaxine. Compared with mice that receive concurrent venlafaxine, corticosterone-treated mice also display reduced ex vivo γ power and impaired working memory. Autopsy-derived PFC samples show elevated MMP-9 levels in antidepressant-treated MDD patients compared with controls. These preclinical and postmortem findings highlight a link between extracellular matrix regulation and MDD.SIGNIFICANCE STATEMENT Reduced excitatory neurotransmission occurs with major depressive disorder, and may be normalized by antidepressant treatment. Underlying molecular mechanisms are, however, not well understood. Herein we investigate a potential role for an extracellular protease, released from neurons and known to play a role in learning and memory, in antidepressant-associated increases in excitatory transmission. Our data suggest that this protease, matrix metalloprotease-9, increases branching of excitatory neurons and concomitantly attenuates the perineuronal net to potentially reduce inhibitory input to these neurons. Matrix metalloprotease-9 may thus enhance overall excitatory/inhibitory balance and neuronal population dynamics, which are important to mood and memory.


Subject(s)
Depressive Disorder, Major/drug therapy , Gamma Rhythm , Matrix Metalloproteinase 9/metabolism , Neural Inhibition , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Stress, Psychological/complications , Venlafaxine Hydrochloride/pharmacology , Adult , Aged , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Depressive Disorder, Major/etiology , Female , Humans , Male , Matrix Metalloproteinase 9/genetics , Memory, Short-Term , Mice , Mice, Inbred C57BL , Middle Aged , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Serotonin and Noradrenaline Reuptake Inhibitors/therapeutic use , Venlafaxine Hydrochloride/therapeutic use
6.
J Neurosci ; 40(26): 5116-5136, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32439703

ABSTRACT

Memory disruption in mild cognitive impairment (MCI) and Alzheimer's disease (AD) is poorly understood, particularly at early stages preceding neurodegeneration. In mouse models of AD, there are disruptions to sharp wave ripples (SWRs), hippocampal population events with a critical role in memory consolidation. However, the microcircuitry underlying these disruptions is under-explored. We tested whether a selective reduction in parvalbumin-expressing (PV) inhibitory interneuron activity underlies hyperactivity and SWR disruption. We employed the 5xFAD model of familial AD crossed with mouse lines labeling excitatory pyramidal cells (PCs) and inhibitory PV cells. We observed a 33% increase in frequency, 58% increase in amplitude, and 8% decrease in duration of SWRs in ex vivo slices from male and female three-month 5xFAD mice versus littermate controls. 5xFAD mice of the same age were impaired in a hippocampal-dependent memory task. Concurrent with SWR recordings, we performed calcium imaging, cell-attached, and whole-cell recordings of PC and PV cells within the CA1 region. PCs in 5xFAD mice participated in enlarged ensembles, with superficial PCs (sPCs) having a higher probability of spiking during SWRs. Both deep PCs (dPCs) and sPCs displayed an increased synaptic E/I ratio, suggesting a disinhibitory mechanism. In contrast, we observed a 46% spike rate reduction during SWRs in PV basket cells (PVBCs), while PV bistratified and axo-axonic cells were unimpaired. Excitatory synaptic drive to PVBCs was selectively reduced by 50%, resulting in decreased E/I ratio. Considering prior studies of intrinsic PV cell dysfunction in AD, these findings suggest alterations to the PC-PVBC microcircuit also contribute to impairment.SIGNIFICANCE STATEMENT We demonstrate that a specific subtype of inhibitory neuron, parvalbumin-expressing (PV) basket cells, have selectively reduced activity in a model of Alzheimer's disease (AD) during activity critical for the consolidation of memory. These results identify a potential cellular target for therapeutic intervention to restore aberrant network activity in early amyloid pathology. While PV cells have previously been identified as a potential therapeutic target, this study for the first time recognizes that other PV neuronal subtypes, including bistratified and axo-axonic cells, are spared. These experiments are the first to record synaptic and spiking activity during sharp wave ripple (SWR) events in early amyloid pathology and reveal that a selective decrease in excitatory synaptic drive to PV basket cells (PVBCs) likely underlies reduced function.


Subject(s)
Alzheimer Disease/physiopathology , Hippocampus/physiopathology , Interneurons/physiology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parvalbumins/metabolism , Pyramidal Cells/physiology
7.
Eur J Neurosci ; 53(12): 3879-3888, 2021 06.
Article in English | MEDLINE | ID: mdl-32673433

ABSTRACT

Emerging evidence suggests that extracellular matrix (ECM) alterations occur with stress. Specifically, increases in perineuronal net (PNN) deposition have been observed in rodents exposed to chronic corticosterone or persistent social defeat stress. The PNN is a specific form of ECM that is predominantly localized to parvalbumin (PV)-expressing inhibitory interneurons where it modulates neuronal excitability and brain oscillations that are influenced by the same. Consistent with a role for ECM changes in contributing to the depressive phenotype, recent studies have demonstrated that monoamine reuptake inhibitor type antidepressants can reduce PNN deposition, improve behavior and stimulate changes in gamma oscillatory power that may be important to mood and memory. The present review will highlight studies in humans, rodents and zebrafish that have examined stress, PNN deposition and/or gamma oscillations with a focus on potential cellular and molecular underpinnings.


Subject(s)
Depression , Extracellular Matrix , Stress, Psychological/physiopathology , Animals , Depression/physiopathology , Humans , Interneurons , Parvalbumins , Rodentia , Zebrafish
8.
Glia ; 67(9): 1719-1729, 2019 09.
Article in English | MEDLINE | ID: mdl-31124192

ABSTRACT

The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.


Subject(s)
Astrocytes/metabolism , Astrocytes/virology , Chemokine CCL2/metabolism , Matrix Metalloproteinases/metabolism , Protein Serine-Threonine Kinases/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Adult , Animals , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/virology , Female , HIV-1 , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Protein Serine-Threonine Kinases/genetics , Signal Transduction
9.
J Neurochem ; 148(6): 810-821, 2019 03.
Article in English | MEDLINE | ID: mdl-30697747

ABSTRACT

Drugs that target monoaminergic transmission represent a first-line treatment for major depression. Though a full understanding of the mechanisms that underlie antidepressant efficacy is lacking, evidence supports a role for enhanced excitatory transmission. This can occur through two non-mutually exclusive mechanisms. The first involves increased function of excitatory neurons through relatively direct mechanisms such as enhanced dendritic arborization. Another mechanism involves reduced inhibitory function, which occurs with the rapid antidepressant ketamine. Consistent with this, GABAergic interneuron-mediated cortical inhibition is linked to reduced gamma oscillatory power, a rhythm also diminished in depression. Remission of depressive symptoms correlates with restoration of gamma power. As a result of strong excitatory input, reliable GABA release, and fast firing, PV-expressing neurons (PV neurons) represent critical pacemakers for synchronous oscillations. PV neurons also represent the predominant GABAergic population enveloped by perineuronal nets (PNNs), lattice-like structures that localize glutamatergic input. Disruption of PNNs reduces PV excitability and enhances gamma activity. Studies suggest that monoamine reuptake inhibitors reduce integrity of the PNN. Mechanisms by which these inhibitors reduce PNN integrity, however, remain largely unexplored. A better understanding of these issues might encourage development of therapeutics that best up-regulate PNN-modulating proteases. We observe that the serotonin/norepinephrine reuptake inhibitor venlafaxine increases hippocampal matrix metalloproteinase (MMP)-9 levels as determined by ELISA and concomitantly reduces PNN integrity in murine hippocampus as determined by analysis of sections following their staining with a fluorescent PNN-binding lectin. Moreover, venlafaxine-treated mice (30 mg/kg/day) show an increase in carbachol-induced gamma power in ex vivo hippocampal slices as determined by local field potential recording and Matlab analyses. Studies with mice deficient in matrix metalloproteinase 9 (MMP-9), a protease linked to PNN disruption in other settings, suggest that MMP-9 contributes to venlafaxine-enhanced gamma power. In conclusion, our results support the possibility that MMP-9 activity contributes to antidepressant efficacy through effects on the PNN that may in turn enhance neuronal population dynamics involved in mood and/or memory. Cover Image for this issue: doi: 10.1111/jnc.14498.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Gamma Rhythm/drug effects , Matrix Metalloproteinase 9/metabolism , Nerve Net/drug effects , Venlafaxine Hydrochloride/pharmacology , Animals , Female , Gamma Rhythm/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Proteolysis/drug effects
10.
BMC Biol ; 16(1): 105, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30253757

ABSTRACT

During hearing in mammals, "sensorineural" inner hair cells convert sound wave-generated mechanical input into electrical activity, resulting in glutamate release onto type I spiral ganglion neurons (SGNs) at specialized synapses known as "ribbon synapses". New findings published here in BMC Biology by Sonntag and colleagues indicate a role for the proteoglycan Brevican in forming perineurounal net (PNN) baskets at these synapses and controlling the spatial distribution of presynaptic voltage-gated calcium channels that regulate glutamate release. These findings may provide insight into the mechanism by which individual ribbon synapses within a single hair cell can function in an independent manner to facilitate hearing within a broad dynamic range.


Subject(s)
Brevican , Calcium , Animals , Extracellular Matrix , Hair , Synapses
11.
Hippocampus ; 28(1): 42-52, 2018 01.
Article in English | MEDLINE | ID: mdl-28921856

ABSTRACT

Hippocampal sharp wave ripples (SWRs) represent irregularly occurring synchronous neuronal population events that are observed during phases of rest and slow wave sleep. SWR activity that follows learning involves sequential replay of training-associated neuronal assemblies and is critical for systems level memory consolidation. SWRs are initiated by CA2 or CA3 pyramidal cells (PCs) and require initial excitation of CA1 PCs as well as participation of parvalbumin (PV) expressing fast spiking (FS) inhibitory interneurons. These interneurons are relatively unique in that they represent the major neuronal cell type known to be surrounded by perineuronal nets (PNNs), lattice like structures composed of a hyaluronin backbone that surround the cell soma and proximal dendrites. Though the function of the PNN is not completely understood, previous studies suggest it may serve to localize glutamatergic input to synaptic contacts and thus influence the activity of ensheathed cells. Noting that FS PV interneurons impact the activity of PCs thought to initiate SWRs, and that their activity is critical to ripple expression, we examine the effects of PNN integrity on SWR activity in the hippocampus. Extracellular recordings from the stratum radiatum of horizontal murine hippocampal hemisections demonstrate SWRs that occur spontaneously in CA1. As compared with vehicle, pre-treatment (120 min) of paired hemislices with hyaluronidase, which cleaves the hyaluronin backbone of the PNN, decreases PNN integrity and increases SWR frequency. Pre-treatment with chondroitinase, which cleaves PNN side chains, also increases SWR frequency. Together, these data contribute to an emerging appreciation of extracellular matrix as a regulator of neuronal plasticity and suggest that one function of mature perineuronal nets could be to modulate the frequency of SWR events.


Subject(s)
Action Potentials/physiology , Extracellular Space/metabolism , Hippocampus/metabolism , Interneurons/metabolism , Animals , Chondroitinases and Chondroitin Lyases/administration & dosage , Chondroitinases and Chondroitin Lyases/metabolism , Female , Hippocampus/cytology , Hyaluronoglucosaminidase/administration & dosage , Hyaluronoglucosaminidase/metabolism , Interneurons/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Parvalbumins/genetics , Parvalbumins/metabolism , Tissue Culture Techniques
12.
Neural Plast ; 2018: 5735789, 2018.
Article in English | MEDLINE | ID: mdl-29531525

ABSTRACT

The perineuronal net (PNN) represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV-) positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.


Subject(s)
Brain/metabolism , Nerve Net/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Proteolysis , Animals , Brain/pathology , Humans , Interneurons/metabolism , Interneurons/pathology , Nerve Net/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Neurons/pathology , Peripheral Nerves/metabolism , Peripheral Nerves/pathology
13.
J Neurochem ; 140(4): 550-560, 2017 02.
Article in English | MEDLINE | ID: mdl-27925199

ABSTRACT

Oscillatory activity occurs in cortical and hippocampal networks with specific frequency ranges thought to be critical to working memory, attention, differentiation of neuronal precursors, and memory trace replay. Synchronized activity within relatively large neuronal populations is influenced by firing and bursting frequency within individual cells, and the latter is modulated by changes in intrinsic membrane excitability and synaptic transmission. Published work suggests that dopamine, a potent modulator of learning and memory, acts on dopamine receptor 1-like dopamine receptors to influence the phosphorylation and trafficking of glutamate receptor subunits, along with long-term potentiation of excitatory synaptic transmission in striatum and prefrontal cortex. Prior studies also suggest that dopamine can influence voltage gated ion channel function and membrane excitability in these regions. Fewer studies have examined dopamine's effect on related endpoints in hippocampus, or potential consequences in terms of network burst dynamics. In this study, we record action potential activity using a microelectrode array system to examine the ability of dopamine to modulate baseline and glutamate-stimulated bursting activity in an in vitro network of cultured murine hippocampal neurons. We show that dopamine stimulates a dopamine type-1 receptor-dependent increase in number of overall bursts within minutes of its application. Notably, however, at the concentration used herein, dopamine did not increase the overall synchrony of bursts between electrodes. Although the number of bursts normalizes by 40 min, bursting in response to a subsequent glutamate challenge is enhanced by dopamine pretreatment. Dopamine-dependent potentiation of glutamate-stimulated bursting was not observed when the two modulators were administered concurrently. In parallel, pretreatment of murine hippocampal cultures with dopamine stimulated lasting increases in the phosphorylation of the glutamate receptor subunit GluA1 at serine 845. This effect is consistent with the possibility that enhanced membrane insertion of GluAs may contribute to a more slowly evolving dopamine-dependent potentiation of glutamate-stimulated bursting. Together, these results are consistent with the possibility that dopamine can influence hippocampal bursting by at least two temporally distinct mechanisms, contributing to an emerging appreciation of dopamine-dependent effects on network activity in the hippocampus.


Subject(s)
Dopamine/pharmacology , Glutamic Acid/pharmacology , Hippocampus/metabolism , Nerve Net/metabolism , Neurons/metabolism , Receptors, Dopamine D1/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Animals, Newborn , Cells, Cultured , Dopamine Antagonists/pharmacology , Female , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Nerve Net/drug effects , Neurons/drug effects , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors
14.
J Neuroinflammation ; 14(1): 56, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28302163

ABSTRACT

BACKGROUND: Matrix metalloproteinases (MMPs) are a family of enzymes that are typically released from intracellular stores to act on specific extracellular substrates. MMP expression and activity can be increased in a neuronal activity-dependent manner, and further increased in response to tissue injury. MMP substrates include cell adhesion molecules (CAMs) that are abundantly expressed in the brain and well positioned for membrane proximal cleavage. Importantly, CAM integrity is important to synaptic structure and axon-myelin interactions, and shed ectodomains may themselves influence cellular function. METHODS: In the present study, we have examined proteolysis of N-cadherin (N-cdh) by MMP-7, a family member that has been implicated in disorders including HIV dementia, multiple sclerosis, and major depression. With in vitro digest assays, we tested N-cdh cleavage by increasing concentrations of recombinant enzyme. We also tested MMP-7 for its potential to stimulate N-cdh shedding from cultured neural cells. Since select CAM ectodomains may interact with cell surface receptors that are expressed on microglial cells, we subsequently tested the N-cdh ectodomain for its ability to stimulate activation of this cell type as determined by nuclear translocation of NF-κB, Iba-1 expression, and TNF-α release. RESULTS: We observed that soluble N-cdh increased Iba-1 levels in microglial lysates, and also increased microglial release of the cytokine TNF-α. Effects were associated with increased NF-κB immunoreactivity in microglial nuclei and diminished by an inhibitor of the toll-like receptor adaptor protein, MyD88. CONCLUSIONS: Together, these in vitro results suggest that soluble N-cdh may represent a novel effector of microglial activation, and that disorders with increased MMP levels may stimulate a cycle in which the products of excess proteolysis further exacerbate microglial-mediated tissue injury. Additional in vivo studies are warranted to address this issue.


Subject(s)
Cadherins/pharmacology , Matrix Metalloproteinases/metabolism , Microglia/drug effects , Microglia/metabolism , ADAM10 Protein/metabolism , ADAM10 Protein/pharmacology , Animals , Animals, Newborn , Calcium-Binding Proteins/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Oligopeptides/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Protein Transport/drug effects , Rats , Signal Transduction/drug effects
15.
Eur J Neurosci ; 43(2): 194-203, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26660285

ABSTRACT

Dopamine (DA) is a potent neuromodulator known to influence glutamatergic transmission in striatal medium spiny neurons (MSNs). It acts on D1- and D2-like DA receptors that are expressed on two distinct subpopulations. MSNs projecting to the substantia nigra express D1 receptors (D1Rs), while those projecting to the lateral globus pallidus express D2 receptors (D2Rs). D1R signalling in particular can increase excitatory transmission through varied protein kinase A-dependent, cell-autonomous pathways. Mechanisms by which D1R signalling could increase excitatory transmission in D2R-bearing MSNs have been relatively less explored. Herein, the possibility is considered that D1R agonists increase levels of soluble factors that subsequently influence N-methyl-D-aspartate (NMDA)-stimulated calcium flux in D2R neurons. This study focuses on matrix metalloproteinases (MMPs) and MMP-generated integrin binding ligands, important soluble effectors of glutamatergic transmission that may be elevated in the setting of excess DA. It was observed that DA and a D1R agonist, SKF81297, increase MMP activity in extracts from striatal slices, as determined by cleavage of the substrate ß-dystroglycan. Using mice engineered to express the calcium indicator GCaMP3 in striatopallidal D2R-bearing neurons, it was also observed that SKF81297 pretreatment of slices (60 min) potentiates NMDA-stimulated calcium increases in this subpopulation. Effects are diminished by pretreatment with an antagonist of MMP activity or an inhibitor of integrin-dependent signalling. Together, results suggest that DA signalling can increase excitatory transmission in D2R neurons through an MMP-dependent mechanism. Future studies may be warranted to determine whether D1R-stimulated MMP-dependent processes contribute to behaviours in which increased activity in striatopallidal MSNs plays a role.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Globus Pallidus/metabolism , Metalloproteases/metabolism , Neurons/metabolism , Receptors, Dopamine D2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Benzazepines/administration & dosage , Calcium/metabolism , Corpus Striatum/drug effects , Dipeptides/administration & dosage , Dopamine/administration & dosage , Dopamine Agonists/administration & dosage , Globus Pallidus/drug effects , Metalloproteases/antagonists & inhibitors , Mice , Neurons/drug effects , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/agonists
16.
Neural Plast ; 2015: 646595, 2015.
Article in English | MEDLINE | ID: mdl-26783471

ABSTRACT

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that play a role in varied forms of developmental and postnatal neuroplasticity. MMP substrates include protease-activated receptor-1 (PAR-1), a G-protein coupled receptor expressed in hippocampus. We examined proliferation and differentiation of adult neural progenitor cells (aNPCs) from hippocampi of mice that overexpress the potent PAR-1 agonist MMP-1. We found that, as compared to aNPCs from littermate controls, MMP-1 tg aNPCs display enhanced proliferation. Under differentiating conditions, these cells give rise to a higher percentage of MAP-2(+) neurons and a reduced number of oligodendrocyte precursors, and no change in the number of astrocytes. The fact that these results are MMP and PAR-1 dependent is supported by studies with distinct antagonists. Moreover, JSH-23, an inhibitor of NF-κB p65 nuclear translocation, counteracted both the proliferation and differentiation changes seen in MMP-1 tg-derived NPCs. In complementary studies, we found that the percentage of Sox2(+) undifferentiated progenitor cells is increased in hippocampi of MMP-1 tg animals, compared to wt mice. Together, these results add to a growing body of data suggesting that MMPs are effectors of hippocampal neuroplasticity in the adult CNS and that the MMP-1/PAR-1 axis may play a role in neurogenesis following physiological and/or pathological stimuli.


Subject(s)
Cell Differentiation , Cell Proliferation , Hippocampus/physiology , Matrix Metalloproteinase 13/metabolism , Neural Stem Cells/physiology , Receptor, PAR-1/metabolism , Animals , Hippocampus/metabolism , Male , Matrix Metalloproteinase 13/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B/metabolism , SOXB1 Transcription Factors/metabolism
17.
Front Neurosci ; 17: 1188065, 2023.
Article in English | MEDLINE | ID: mdl-37304012

ABSTRACT

Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.

18.
Cancer Cell ; 2(6): 473-83, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12498716

ABSTRACT

Id proteins are helix-loop-helix transcription factors that regulate tumor angiogenesis. In order to identify downstream effectors of Id1 involved in the regulation of angiogenesis, we performed PCR-select subtractive hybridization on wild-type and Id1 knockout mouse embryo fibroblasts (MEFs). Here we demonstrate that thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis, is a target of transcriptional repression by Id1. We also show that Id1-null MEFs secrete an inhibitor of endothelial cell migration, which is completely inactivated by depletion of TSP-1. Furthermore, in vivo studies revealed decreased neovascularization in matrigel assays in Id1-null mice compared to their wild-type littermates. This decrease was completely reversed by a TSP-1 neutralizing antibody. We conclude that TSP-1 is a major target for Id1 effects on angiogenesis.


Subject(s)
Gene Expression Regulation , Neovascularization, Pathologic/genetics , Repressor Proteins , Thrombospondin 1/genetics , Transcription Factors/physiology , Animals , Cattle , Cell Movement/drug effects , Cells, Cultured , E-Box Elements , Embryo, Mammalian , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Fibroblasts/physiology , Humans , Immunohistochemistry , Inhibitor of Differentiation Protein 1 , Mice , Mice, Knockout , Polymerase Chain Reaction , Promoter Regions, Genetic , Thrombospondin 1/antagonists & inhibitors , Thrombospondin 1/biosynthesis , Thrombospondin 1/pharmacology , Transcription Factors/deficiency , Transcription, Genetic , Up-Regulation
19.
J Neurochem ; 118(4): 521-32, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21166806

ABSTRACT

Methamphetamine (MA) is a highly addictive psychostimulant that, used in excess, may be neurotoxic. Although the mechanisms that underlie its addictive potential are not completely understood, in animal models matrix metalloproteinase (MMP) inhibitors can reduce behavioral correlates of addiction. In addition, evidence from genome-wide association studies suggests that polymorphisms in synaptic cell-adhesion molecules (CAMs), known MMP substrates, are linked to addictive potential in humans. In the present study, we examined the ability of MA to stimulate cleavage of intercellular adhesion molecule-5 (ICAM-5), a synaptic CAM expressed on dendritic spines in the telencephalon. Previous studies have shown that shedding of ICAM-5 is associated with maturation of dendritic spines, and that MMP-dependent shedding occurs with long term potentiation. Herein, we show that MA stimulates ectodomain cleavage of ICAM-5 in vitro, and that this is abrogated by a broad spectrum MMP inhibitor. We also show that an acute dose of MA, administered in vivo, is associated with cleavage of ICAM-5 in murine hippocampus and striatum. This occurs within 6 h and is accompanied by an increase in MMP-9 protein. In related experiments, we examined the potential consequences of ICAM-5 shedding. We demonstrate that the ICAM-5 ectodomain can interact with ß(1) integrins, and that it can stimulate ß(1) integrin-dependent phosphorylation of cofilin, an event that has previously been linked to MMP-dependent spine maturation. Together these data support an emerging appreciation of MMPs as effectors of synaptic plasticity and suggest a mechanism by which MA may influence the same.


Subject(s)
Cell Adhesion Molecules/metabolism , Central Nervous System Stimulants/toxicity , Methamphetamine/toxicity , Nerve Tissue Proteins/metabolism , Actin Depolymerizing Factors/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Densitometry , Dipeptides/pharmacology , Enzyme-Linked Immunosorbent Assay , Female , Immunohistochemistry , Immunoprecipitation , Integrin beta1/biosynthesis , Male , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/biosynthesis , Mesencephalon/cytology , Mesencephalon/drug effects , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation , Protease Inhibitors/pharmacology , Rats , Spine/growth & development , Spine/metabolism , Transfection
20.
J Neurovirol ; 17(2): 153-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21302026

ABSTRACT

Circulating levels of matrix metalloproteinases (MMP-1 and 7) have been found to correlate with the severity of brain injury in HIV-infected subjects. This study used high-resolution neuroanatomic imaging and automated segmentation algorithms to clarify this relationship. Both metalloproteinases were significantly correlated with increased cerebrospinal fluid volume fraction. Comprehensive brain volumetric analysis revealed a more marked relationship with atrophy for MMP-7, which was significantly correlated with neural injury in multiple brain regions and nearly all ventricular measurements. MMP-7 was also correlated with measures of virologic and cognitive status.


Subject(s)
AIDS Dementia Complex/metabolism , Brain/metabolism , Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging/methods , Matrix Metalloproteinase 7 , AIDS Dementia Complex/pathology , AIDS Dementia Complex/virology , Algorithms , Atrophy , Automation, Laboratory , Brain/pathology , Brain/virology , CD4-Positive T-Lymphocytes/pathology , Cell Count , Cognition , Female , HIV/physiology , HIV Infections/metabolism , HIV Infections/pathology , HIV Infections/virology , Humans , Male , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 2/cerebrospinal fluid , Matrix Metalloproteinase 7/biosynthesis , Matrix Metalloproteinase 7/cerebrospinal fluid , Middle Aged , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL