Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30241615

ABSTRACT

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Subject(s)
Bone Development/physiology , Bone and Bones/cytology , Hematopoietic Stem Cells/cytology , Animals , Bone and Bones/metabolism , Cartilage/cytology , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis/methods , Stem Cells/cytology , Stromal Cells/cytology , Transcriptome/genetics
2.
Nature ; 597(7875): 256-262, 2021 09.
Article in English | MEDLINE | ID: mdl-34381212

ABSTRACT

Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.


Subject(s)
Aging/pathology , Bone and Bones/pathology , Cellular Senescence , Inflammation/pathology , Stem Cell Niche , Stem Cells/pathology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , Cell Lineage , Female , Fracture Healing , Hematopoiesis , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Myeloid Cells/cytology , Osteoclasts/cytology , Rejuvenation
3.
Nature ; 587(7835): 619-625, 2020 11.
Article in English | MEDLINE | ID: mdl-33208946

ABSTRACT

Although single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles1-9, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones. This comprehensive molecular atlas identifies the biochemical functions of lung cells and the transcription factors and markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signalling interactions and immune cell homing; and identifies cell types that are directly affected by lung disease genes and respiratory viruses. By comparing human and mouse data, we identified 17 molecular cell types that have been gained or lost during lung evolution and others with substantially altered expression profiles, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions and interactions are achieved in development and tissue engineering and altered in disease and evolution.


Subject(s)
Cells/classification , Cells/metabolism , Immunity , Lung/cytology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome/genetics , Aged , Animals , Atlases as Topic , Biomarkers , Cell Communication , Cells/immunology , Chemokines/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Female , Humans , Lung/immunology , Male , Mice , Middle Aged , Receptors, Lymphocyte Homing/metabolism , Signal Transduction , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL