Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 179(7): 1636-1646.e15, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31787378

ABSTRACT

B cell receptor (BCR) sequencing is a powerful tool for interrogating immune responses to infection and vaccination, but it provides limited information about the antigen specificity of the sequenced BCRs. Here, we present LIBRA-seq (linking B cell receptor to antigen specificity through sequencing), a technology for high-throughput mapping of paired heavy- and light-chain BCR sequences to their cognate antigen specificities. B cells are mixed with a panel of DNA-barcoded antigens so that both the antigen barcode(s) and BCR sequence are recovered via single-cell next-generation sequencing. Using LIBRA-seq, we mapped the antigen specificity of thousands of B cells from two HIV-infected subjects. The predicted specificities were confirmed for a number of HIV- and influenza-specific antibodies, including known and novel broadly neutralizing antibodies. LIBRA-seq will be an integral tool for antibody discovery and vaccine development efforts against a wide range of antigen targets.


Subject(s)
Epitope Mapping/methods , Epitopes/chemistry , Receptors, Antigen, B-Cell/chemistry , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antigens/chemistry , Antigens/immunology , Cells, Cultured , Epitopes/immunology , HEK293 Cells , HIV Antibodies/chemistry , HIV Antibodies/immunology , High-Throughput Nucleotide Sequencing/methods , High-Throughput Screening Assays/methods , Humans , Receptors, Antigen, B-Cell/immunology , THP-1 Cells
2.
Cell ; 175(2): 387-399.e17, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30270043

ABSTRACT

HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Antibodies, Neutralizing/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Adult , B-Lymphocytes/immunology , Cell Line , Cohort Studies , Female , Gene Expression Profiling/methods , HIV Antibodies/immunology , HIV Infections/physiopathology , HIV-1/pathogenicity , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Male , Middle Aged
3.
Cell ; 166(4): 1004-1015, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27453467

ABSTRACT

Targeted HIV cure strategies require definition of the mechanisms that maintain the virus. Here, we tracked HIV replication and the persistence of infected CD4 T cells in individuals with natural virologic control by sequencing viruses, T cell receptor genes, HIV integration sites, and cellular transcriptomes. Our results revealed three mechanisms of HIV persistence operating within distinct anatomic and functional compartments. In lymph node, we detected viruses with genetic and transcriptional attributes of active replication in both T follicular helper (TFH) cells and non-TFH memory cells. In blood, we detected inducible proviruses of archival origin among highly differentiated, clonally expanded cells. Linking the lymph node and blood was a small population of circulating cells harboring inducible proviruses of recent origin. Thus, HIV replication in lymphoid tissue, clonal expansion of infected cells, and recirculation of recently infected cells act together to maintain the virus in HIV controllers despite effective antiviral immunity.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Blood/virology , CD4-Positive T-Lymphocytes/immunology , Chronic Disease , DNA, Viral/genetics , HIV Infections/immunology , HIV-1/genetics , Humans , Leukocytes, Mononuclear , Lymph Nodes/virology , Proviruses/immunology , Sequence Analysis, DNA , Virus Physiological Phenomena , Virus Replication
4.
Cell ; 165(4): 813-26, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27114034

ABSTRACT

The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer.


Subject(s)
HIV-1/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Crystallography, X-Ray , Glycosylation , HIV-1/classification , HIV-1/immunology , Immune Evasion , Models, Molecular , Molecular Dynamics Simulation , Polysaccharides/analysis , Polysaccharides/metabolism
5.
Cell ; 161(3): 470-485, 2015 04 23.
Article in English | MEDLINE | ID: mdl-25865483

ABSTRACT

HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.


Subject(s)
Antibodies, Neutralizing/genetics , B-Lymphocytes/immunology , Evolution, Molecular , HIV Infections/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibody Diversity , Chronic Disease , Humans , Leukocytes, Mononuclear , Models, Molecular , Molecular Sequence Data , Sequence Alignment
6.
Cell ; 161(6): 1280-92, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26004070

ABSTRACT

The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV-1/physiology , Amino Acid Sequence , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , CD4 Antigens/metabolism , Complementarity Determining Regions , Epitopes, B-Lymphocyte , HIV Envelope Protein gp120/immunology , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment
7.
Nat Immunol ; 16(6): 563-70, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25988888

ABSTRACT

The cellular immune response to HIV-1 has now been studied in extraordinary detail. A very large body of data provides the most likely reasons that the HIV-specific cellular immune response succeeds in a small number of people but fails in most. Understanding the success and failure of the HIV-specific cellular immune response has implications that extend not only to immunotherapies and vaccines for HIV-1 but also to the cellular immune response in other disease states. This Review focuses on the mechanisms that are most likely responsible for durable and potent immunologic control of HIV-1. Although we now have a detailed picture of the cellular immune responses to HIV-1, important questions remain regarding the nature of these responses and how they arise.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/immunology , HIV-1/immunology , Immunity, Cellular , Animals , Antigens, Viral/immunology , Asymptomatic Diseases , Cytotoxicity, Immunologic/genetics , Disease Progression , Epitopes, T-Lymphocyte/immunology , HIV Infections/therapy , HIV Long-Term Survivors , HLA Antigens/genetics , Humans , Immunotherapy , Polymorphism, Genetic , nef Gene Products, Human Immunodeficiency Virus/genetics
8.
Immunity ; 49(6): 1162-1174.e8, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30552024

ABSTRACT

Elicitation of VRC01-class broadly neutralizing antibodies (bnAbs) is an appealing approach for a preventative HIV-1 vaccine. Despite extensive investigations, strategies to induce VRC01-class bnAbs and overcome the barrier posed by the envelope N276 glycan have not been successful. Here, we inferred a high-probability unmutated common ancestor (UCA) of the VRC01 lineage and reconstructed the stages of lineage maturation. Env immunogens designed on reverted VRC01-class bnAbs bound to VRC01 UCA with affinity sufficient to activate naive B cells. Early mutations defined maturation pathways toward limited or broad neutralization, suggesting that focusing the immune response is likely required to steer B cell maturation toward the development of neutralization breadth. Finally, VRC01 lineage bnAbs with long CDR H3s overcame the HIV-1 N276 glycan barrier without shortening their CDR L1, revealing a solution for broad neutralization in which the heavy chain, not CDR L1, is the determinant to accommodate the N276 glycan.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , HIV Infections/immunology , HIV-1/immunology , Polysaccharides/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Amino Acid Sequence , Antibodies, Monoclonal/classification , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/classification , Antibodies, Neutralizing/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Binding Sites/genetics , Broadly Neutralizing Antibodies , CD4 Antigens/genetics , CD4 Antigens/immunology , CD4 Antigens/metabolism , HIV Antibodies , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , HIV Infections/therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Humans , Phylogeny , Polysaccharides/metabolism , Sequence Homology, Amino Acid
9.
Immunity ; 46(5): 777-791.e10, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28514685

ABSTRACT

Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Peptide Fragments/immunology , Protein Conformation , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Binding Sites , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , HIV Antibodies/chemistry , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV Infections/virology , Humans , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phylogeny , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Vaccines, Virus-Like Particle/chemistry , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/metabolism
10.
Immunity ; 45(4): 712-714, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27760334

ABSTRACT

CD8+ T cells that recognize peptides presented by MHC class II molecules have been observed in a macaque SIV vaccine model. A new study by Ranasinghe et al. (2016) shows that virus-specific class-II-restricted CD8+ T cells can be found in some HIV-infected patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , Animals , Humans , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology
11.
Immunity ; 45(5): 1108-1121, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851912

ABSTRACT

Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.


Subject(s)
Antibodies, Neutralizing/immunology , Binding Sites, Antibody/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Antibody Specificity , CD4-Positive T-Lymphocytes/immunology , Cell Separation , HIV Envelope Protein gp120/immunology , Humans
12.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33536176

ABSTRACT

An ability to activate latent HIV-1 expression could benefit many HIV cure strategies, but the first generation of latency reversing agents (LRAs) has proven disappointing. We evaluated AKT/mTOR activators as a potential new class of LRAs. Two glycogen synthase kinase-3 inhibitors (GSK-3i's), SB-216763 and tideglusib (the latter already in phase II clinical trials) that activate AKT/mTOR signaling were tested. These GSK-3i's reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy (ART) in the absence of T cell activation, release of inflammatory cytokines, cell toxicity, or impaired effector function of cytotoxic T lymphocytes or NK cells. However, when administered in vivo to SIV-infected rhesus macaques on suppressive ART, tideglusib exhibited poor pharmacodynamic properties and resulted in no clear evidence of significant SIV latency reversal. Whether alternative pharmacological formulations or combinations of this drug with other classes of LRAs will lead to an effective in vivo latency-reversing strategy remains to be determined.IMPORTANCE If combined with immune therapeutics, latency reversing agents (LRAs) have the potential to reduce the size of the reservoir sufficiently that an engineered immune response can control the virus in the absence of antiretroviral therapy. We have identified a new class of LRAs that do not induce T-cell activation and that are able to potentiate, rather than inhibit, CD8+ T and NK cell cytotoxic effector functions. This new class of LRAs corresponds to inhibitors of glycogen synthase kinase-3. In this work, we have also studied the effects of one member of this drug class, tideglusib, in SIV-infected rhesus monkeys. When tested in vivo, however, tideglusib showed unfavorable pharmacokinetic properties, which resulted in lack of SIV latency reversal. The disconnect between our ex vivo and in vivo results highlights the importance of developing next generation LRAs with pharmacological properties that allow systemic drug delivery in relevant anatomical compartments harboring latent reservoirs.

13.
Immunity ; 39(2): 245-58, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23911655

ABSTRACT

Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Base Sequence , Broadly Neutralizing Antibodies , Crystallography, X-Ray , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , Humans , Leukocytes, Mononuclear , Molecular Sequence Data , Sequence Analysis, DNA
14.
J Infect Dis ; 223(4): 645-654, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33471124

ABSTRACT

CD4 expression identifies a subset of mature T cells primarily assisting the germinal center reaction and contributing to CD8+ T-cell and B-cell activation, functions, and longevity. Herein, we present a family in which a novel variant disrupting the translation-initiation codon of the CD4 gene resulted in complete loss of membrane and plasma soluble CD4 in peripheral blood, lymph node, bone marrow, skin, and ileum of a homozygous proband. This inherited CD4 knockout disease illustrates the clinical and immunological features of a complete deficiency of any functional component of CD4 and its similarities and differences with other clinical models of primary or acquired loss of CD4+ T cells. The first inherited loss of any functional component of CD4, including soluble CD4, is clinically distinct from any other congenital or acquired CD4 T-cell defect and characterized by compensatory changes in T-cell subsets and functional impairment of B cells, monocytes, and natural killer cells.


Subject(s)
CD4 Antigens/deficiency , CD4 Antigens/genetics , Immunologic Deficiency Syndromes/genetics , Peptide Chain Initiation, Translational/genetics , Primary Immunodeficiency Diseases/genetics , Bone Marrow/immunology , Bone Marrow/metabolism , CD4 Antigens/analysis , CD4 Antigens/blood , CD4-Positive T-Lymphocytes/immunology , Codon, Initiator , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Ileum/immunology , Ileum/metabolism , Immunity, Innate , Immunologic Deficiency Syndromes/immunology , Killer Cells, Natural/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation , Male , Monocytes/immunology , Mutation, Missense , Pedigree , Primary Immunodeficiency Diseases/immunology , T-Lymphocyte Subsets/immunology , Young Adult
15.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32907983

ABSTRACT

In various infections or vaccinations of mice or humans, reports of the persistence and the requirements for restimulation of the cytotoxic mediators granzyme B (GrB) and perforin (PRF) in CD8+ T cells have yielded disparate results. In this study, we examined the kinetics of PRF and GrB mRNA and protein expression after stimulation and associated changes in cytotoxic capacity in virus-specific memory cells in detail. In patients with controlled HIV or cleared respiratory syncytial virus (RSV) or influenza virus infections, all virus-specific CD8+ T cells expressed low PRF levels without restimulation. Following stimulation, they displayed similarly delayed kinetics for lytic protein expression, with significant increases occurring by days 1 to 3 before peaking on days 4 to 6. These increases were strongly correlated with, but were not dependent upon, proliferation. Incremental changes in PRF and GrB percent expression and mean fluorescence intensity (MFI) were highly correlated with increases in HIV-specific cytotoxicity. mRNA levels in HIV-specific CD8+ T-cells exhibited delayed kinetics after stimulation as with protein expression, peaking on day 5. In contrast to GrB, PRF mRNA transcripts were little changed over 5 days of stimulation (94-fold versus 2.8-fold, respectively), consistent with posttranscriptional regulation. Changes in expression of some microRNAs, including miR-17, miR-150, and miR-155, suggested that microRNAs might play a significant role in regulation of PRF expression. Therefore, under conditions of extremely low or absent antigen levels, memory virus-specific CD8+ T cells require prolonged stimulation over days to achieve maximal lytic protein expression and cytotoxic capacity.IMPORTANCE Antigen-specific CD8+ T cells play a major role in controlling most virus infections, primarily by perforin (PRF)- and granzyme B (GrB)-mediated apoptosis. There is considerable controversy regarding whether PRF is constitutively expressed, rapidly increased similarly to a cytokine, or delayed in its expression with more prolonged stimulation in virus-specific memory CD8+ T cells. In this study, the degree of cytotoxic capacity of virus-specific memory CD8+ T cells was directly proportional to the content of lytic molecules, which required antigenic stimulation over several days for maximal levels. This appeared to be modulated by increases in GrB transcription and microRNA-mediated posttranscriptional regulation of PRF expression. Clarifying the requirements for maximal cytotoxic capacity is critical to understanding how viral clearance might be mediated by memory cells and what functions should be induced by vaccines and immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , HIV Infections/immunology , Animals , CD8 Antigens/metabolism , Granzymes/metabolism , HIV/metabolism , HIV Infections/metabolism , Humans , Kinetics , Mice , MicroRNAs , Perforin , RNA, Messenger/metabolism
16.
Immunity ; 36(3): 320-1, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22444629

ABSTRACT

In this issue of Immunity, Shan et al. (2012) explore the elimination of cells latently infected with HIV and the potential implications for strategies to eradicate the virus from infected patients.

17.
Curr HIV/AIDS Rep ; 18(3): 211-220, 2021 06.
Article in English | MEDLINE | ID: mdl-33709324

ABSTRACT

PURPOSE OF REVIEW: A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS: During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Animals , CD8-Positive T-Lymphocytes , HIV Infections/drug therapy , Humans
18.
PLoS Pathog ; 14(3): e1006860, 2018 03.
Article in English | MEDLINE | ID: mdl-29505593

ABSTRACT

There is great interest in passive transfer of broadly neutralizing antibodies (bnAbs) and engineered bispecific antibodies (Abs) for prevention of HIV-1 infections due to their in vitro neutralization breadth and potency against global isolates and long in vivo half-lives. We compared the potential of eight bnAbs and two bispecific Abs currently under clinical development, and their 2 Ab combinations, to prevent infection by dominant HIV-1 subtypes in sub-Saharan Africa. Using in vitro neutralization data for Abs against 25 subtype A, 100 C, and 20 D pseudoviruses, we modeled neutralization by single Abs and 2 Ab combinations assuming realistic target concentrations of 10µg/ml total for bnAbs and combinations, and 5µg/ml for bispecifics. We used IC80 breadth-potency, completeness of neutralization, and simultaneous coverage by both Abs in the combination as metrics to characterize prevention potential. Additionally, we predicted in vivo protection by Abs and combinations by modeling protection as a function of in vitro neutralization based on data from a macaque simian-human immunodeficiency virus (SHIV) challenge study. Our model suggests that nearly complete neutralization of a given virus is needed for in vivo protection (~98% neutralization for 50% relative protection). Using the above metrics, we found that bnAb combinations should outperform single bnAbs, as expected; however, different combinations are optimal for different subtypes. Remarkably, a single bispecific 10E8-iMAb, which targets HIV Env and host-cell CD4, outperformed all combinations of two conventional bnAbs, with 95-97% predicted relative protection across subtypes. Combinations that included 10E8-iMAb substantially improved protection over use of 10E8-iMAb alone. Our results highlight the promise of 10E8-iMAb and its combinations to prevent HIV-1 infections in sub-Saharan Africa.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing/therapeutic use , HIV Antibodies/therapeutic use , HIV Infections/prevention & control , HIV-1/classification , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Humans , Neutralization Tests
19.
Nature ; 514(7523): 455-61, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25296255

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.


Subject(s)
HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Cohort Studies , Crystallography, X-Ray , Genetic Variation , Glycosylation , HIV Antibodies/immunology , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV Infections/immunology , Humans , Immune Evasion , Membrane Fusion , Models, Molecular , Molecular Sequence Data , Polysaccharides/chemistry , Polysaccharides/immunology , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/immunology , Structural Homology, Protein , Virus Internalization
20.
Nature ; 515(7525): 138-42, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25186731

ABSTRACT

The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 µg ml(-1). The median IC50 of neutralized viruses was 0.033 µg ml(-1), among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.


Subject(s)
Antibodies, Neutralizing/immunology , Antibody Affinity , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/pharmacology , Antibody Specificity , CD4 Antigens/metabolism , Cell Line , Cell Membrane/virology , Conserved Sequence , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Antibodies/pharmacology , HIV-1/drug effects , HIV-1/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Inhibitory Concentration 50 , Leukocytes, Mononuclear , Models, Molecular , Molecular Sequence Data , Receptors, CCR5/metabolism , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL