Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(19): 9181-9185, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31019080

ABSTRACT

Since the days of Hertz, radio transmitters have evolved from rudimentary circuits emitting around 50 MHz to modern ubiquitous Wi-Fi devices operating at gigahertz radio bands. As wireless data traffic continues to increase, there is a need for new communication technologies capable of high-frequency operation for high-speed data transfer. Here, we give a proof of concept of a compact radio frequency transmitter based on a semiconductor laser frequency comb. In this laser, the beating among the coherent modes oscillating inside the cavity generates a radio frequency current, which couples to the electrodes of the device. We show that redesigning the top contact of the laser allows one to exploit the internal oscillatory current to drive a dipole antenna, which radiates into free space. In addition, direct modulation of the laser current permits encoding a signal in the radiated radio frequency carrier. Working in the opposite direction, the antenna can receive an external radio frequency signal, couple it to the active region, and injection lock the laser. These results pave the way for applications and functionality in optical frequency combs, such as wireless radio communication and wireless synchronization to a reference source.

2.
Opt Lett ; 37(23): 5006-8, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202119

ABSTRACT

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was achieved via active feedback on each amplifier's drive current to maximize the power in the combined beam. The combining efficiency at all current levels was nearly constant at 87%.

3.
Opt Lett ; 36(6): 999-1001, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21403755

ABSTRACT

We have demonstrated active coherent beam combination (CBC) of up to 218 semiconductor amplifiers with 38.5 W cw output using up to eleven one-dimensional 21-element individually addressable diode amplifier arrays operating at 960 nm. The amplifier array elements are slab-coupled-optical-waveguide semiconductor amplifiers (SCOWAs) set up in a master-oscillator-power-amplifier configuration. Diffractive optical elements divide the master-oscillator beam to seed multiple arrays of SCOWAs. A SCOWA was phase actuated by adjusting the drive current to each element and controlled using a stochastic-parallel-gradient-descent (SPGD) algorithm for the active CBC. The SPGD is a hill-climbing algorithm that maximizes on-axis intensity in the far field, providing phase locking without needing a reference beam.

4.
ACS Photonics ; 4(5): 1225-1231, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28540324

ABSTRACT

Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 µm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL