Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Clin Invest ; : e14326, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370572

ABSTRACT

BACKGROUND: Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS: Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION: Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.

2.
Curr Atheroscler Rep ; 26(10): 589-602, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39150672

ABSTRACT

PURPOSE OF REVIEW: Although the clinical benefit of reducing low-density lipoprotein cholesterol (LDLc) in patients with coronary artery disease (CAD) is well-established, the impact on plaque composition and stability is less clear. Our narrative review aimed to assess the clinical effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors on coronary plaque characteristics specifically focusing from atheroma progression to regression and stabilization. RECENT FINDINGS: The combination of statin therapy and PCSK9 inhibitors (evolocumab and alirocumab) promotes plaque stability in patients following an acute coronary syndrome. The GLAGOV study highlighted the relationship between achieved LDLc levels and changes in percentage atheroma volume. Similarly, the PACMAN-AMI study concluded that the qualitative and quantitative changes in coronary plaque were associated with the levels of LDLc. Assessing the severity of coronary artery stenosis and the extent of atherosclerotic burden by means of imaging techniques (e.g., IVUS, OCT and near-infrared spectroscopic) have significantly advanced our understanding of the benefits from promoting plaque regression and achieving to features of plaque stabilization through increasingly intensive lipid-lowering strategies.


Subject(s)
Coronary Artery Disease , PCSK9 Inhibitors , Plaque, Atherosclerotic , Proprotein Convertase 9 , Humans , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/diagnostic imaging , Coronary Artery Disease/drug therapy , Proprotein Convertase 9/metabolism , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Cholesterol, LDL/drug effects , Anticholesteremic Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
3.
Eur Heart J Suppl ; 26(Suppl 1): i56-i59, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38867860

ABSTRACT

Statins have improved the potential to prevent cardiovascular disease events and to prolong the lives of patients. Statins, among the most widely used drugs worldwide, reduce the levels of low-density lipoprotein cholesterol (LDL-C) by an average of 30-50%. However, non-adherence to statin therapy, due to statin intolerance, might be as high as 60% after 24 months of treatment and is associated with a 70% increase in the risk of cardiovascular disease events. Statin intolerance can be classified as a complete inability to tolerate any dose of a statin or a partial intolerance with the inability to tolerate the dose necessary to achieve the patient-specific therapeutic objective. Reasons for discontinuation are many, with statin-associated muscle symptoms being cited as the most frequent reason for stopping therapy and the incidence of muscle symptoms increasing with treatment intensity. Considering the causal effect of LDL-C in the atherosclerotic process, clinicians should consider that regardless of the lipid-lowering drugs patients are willing to take, any reduction in LDL-C they achieve will afford them some benefit in reducing cardiovascular risk. Besides statins, the current therapeutic armamentarium offers different strategies to reach LDL-C targets in statin-intolerant patients (i.e. a fixed combination between a lower dose of statin plus ezetimibe, bempedoic acid, or proprotein convertase subtilisin/kexin type 9 inhibition).

4.
Cardiovasc Diabetol ; 22(1): 222, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620933

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality, being twofold to fourfold more common in patients with type 2 diabetes mellitus (T2DM) than in individuals without diabetes. However, despite this decade-old knowledge, the identification of a specific prognostic risk biomarker remains particularly challenging. METHODS: Taking advantage of a large sample of Caucasian patients (n = 529) with a diagnosis of T2DM followed for a median of 16.8 years, the present study was aimed at testing the hypothesis that fasting serum proprotein convertase subtilisin/kexin type 9 (PCSK9) levels could be prognostic for major adverse cardiovascular events (MACE) and all-cause mortality. RESULTS: Median levels of PCSK9 were 259.8 ng/mL, being higher in women compared to men and increasing even more in the presence of a complication (e.g., diabetic kidney disease). PCSK9 positively correlated with markers of blood glucose homeostasis (e.g., HbA1c, fasting insulin and HOMA-IR) and the atherogenic lipid profile (e.g., non-HDL-C, apoB and remnant cholesterol). Serum PCSK9 predicted new-onset of MACE, either fatal or non-fatal, only in women (Odds Ratio: 2.26, 95% CI 1.12-4.58) and all-cause mortality only in men (Hazard Ratio: 1.79, 95% CI 1.13-2.82). CONCLUSIONS: Considering that up to two-thirds of individuals with T2DM develop ASCVD in their lifetime, the assessment of circulating PCSK9 levels can be envisioned within the context of a biomarker-based strategy of risk stratification. However, the sex difference found highlights an urgent need to develop sex-specific risk assessment strategies. TRIAL REGISTRATION: It is a retrospective study.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Type 2 , Humans , Female , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Follow-Up Studies , Proprotein Convertase 9 , Prognosis , Retrospective Studies
5.
Curr Atheroscler Rep ; 25(10): 691-699, 2023 10.
Article in English | MEDLINE | ID: mdl-37715044

ABSTRACT

PURPOSE OF REVIEW: It is clear from epidemiological studies that patients at high and very-high risk of atherosclerotic cardiovascular diseases (ASCVD) risk do not reach lipid guideline-recommended targets. Thus, fixed-dose combinations of statins/ezetimibe, bempedoic acid/ezetimibe and statins/fibrates may represent a further armamentarium in the field of lipid-lowering approaches in these individuals. RECENT FINDINGS: The combination therapy of moderate-intensity statin with ezetimibe is not inferior to high-intensity statin monotherapy in reducing cardiovascular outcomes. Drug discontinuation or dose reduction is inferior with fixed-dose combination. The fixed-dose combination of bempedoic acid with ezetimibe is superior to bempedoic acid in monotherapy in lowering LDL-C and in reducing high-sensitivity C-reactive protein concentrations. The combination fenofibrate with atorvastatin is superior to monotherapies in lowering triglycerides. Lipid-lowering fixed-dose combinations may guarantee a higher therapy adherence, representing a better approach to control plasma lipids and thus ameliorate ASCVD burden. Additional studies will define the advantages on cardiovascular outcomes in high and very high-risk patients.


Subject(s)
Anticholesteremic Agents , Atherosclerosis , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Cholesterol, LDL , Ezetimibe/therapeutic use , Dyslipidemias/drug therapy , Drug Therapy, Combination , Atherosclerosis/drug therapy , Anticholesteremic Agents/therapeutic use , Treatment Outcome
6.
Nutr Metab Cardiovasc Dis ; 33(2): 245-257, 2023 02.
Article in English | MEDLINE | ID: mdl-36566123

ABSTRACT

AIMS: Although adequate clinical management of patients with hypercholesterolemia without a history of known cardiovascular disease is essential for prevention, these subjects are often disregarded. Furthermore, the scientific literature on primary cardiovascular prevention is not as rich as that on secondary prevention; finally, physicians often lack adequate tools for the effective management of subjects in primary prevention and have to face some unsolved relevant issues. This document aims to discuss and review the evidence available on this topic and provide practical guidance. DATA SYNTHESIS: Available algorithms and risk charts represent the main tool for the assessment of cardiovascular risk in patients in primary prevention. The accuracy of such an estimate can be substantially improved considering the potential contribution of some additional risk factors (C-reactive protein, lipoprotein(a), family history of cardiovascular disease) and conditions (environmental pollution, sleep quality, socioeconomic status, educational level) whose impact on the cardiovascular risk has been better understood in recent years. The availability of non-invasive procedures to evaluate subclinical atherosclerosis may help to identify subjects needing an earlier intervention. Unveiling the presence of these conditions will improve cardiovascular risk estimation, granting a more appropriate intervention. CONCLUSIONS: The accurate assessment of cardiovascular risk in subjects in primary prevention with the use of algorithms and risk charts together with the evaluation of additional factors will allow physicians to approach each patient with personalized strategies, which should translate into an increased adherence to therapy and, as a consequence, a reduced cardiovascular risk.


Subject(s)
Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Humans , Cholesterol, LDL , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Expert Testimony , Hypercholesterolemia/drug therapy , Risk Factors , Primary Prevention/methods , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
7.
Eur Heart J Suppl ; 25(Suppl B): B55-B59, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091668

ABSTRACT

The knowledge that roughly 20% of survivors from an acute coronary syndrome (ACS) event experience a subsequent ischaemic cardiovascular event within 24 months with a 5-year mortality range between 19 and 22% highlights the importance of the lipid-lowering strategies in the secondary prevention after ACS. In this framework, statin treatment significantly improves clinical outcome after ACS. Within this remit, in the present review we critically discuss the use of statin and non-statin lipid-lowering approaches (ezetimibe, evolocumab, alirocumab, inclisiran, and bempedoic acid) in the early management of ACS patients. Relative to this latter aspect, the knowledge that circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) levels are raised during ACS could be a generating hypothesis justifying the use of PCSK9 inhibitors in ACS. Thus, in a field fraught of uncertainty, the main barrier to the widespread prescription of non-statin agents (e.g. PCSK9 inhibitors) relates to their costs when compared with other lipid-lowering agents (e.g. statins and ezetimibe).

8.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768654

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Adult , Child , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver/metabolism , Fibrosis , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism
9.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047404

ABSTRACT

Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1ß, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.


Subject(s)
Cigarette Smoking , Mice , Humans , Animals , Proteomics , Phenotype , Myocytes, Smooth Muscle/metabolism , Protein Kinases/metabolism , Cells, Cultured
10.
Molecules ; 28(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570694

ABSTRACT

Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.


Subject(s)
Nitric Oxide Donors , Nitric Oxide , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/metabolism , Nitric Oxide/metabolism , Endothelial Cells/metabolism , Muscle, Smooth, Vascular , Proteomics , Cell Proliferation , Cells, Cultured , Myocytes, Smooth Muscle
11.
Am J Pathol ; 191(8): 1385-1397, 2021 08.
Article in English | MEDLINE | ID: mdl-34019847

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9), mainly synthetized and released by the liver, represents one of the key regulators of low-density lipoprotein cholesterol. Although genetic and interventional studies have demonstrated that lowering PCSK9 levels corresponds to a cardiovascular benefit, identification of non-cholesterol-related processes has emerged since its discovery. Besides liver, PCSK9 is also expressed in many tissues (eg, intestine, endocrine pancreas, and brain). The aim of the present review is to describe and discuss PCSK9 pathophysiology and possible non-lipid-lowering effects whether already extensively characterized (eg, inflammatory burden of atherosclerosis, triglyceride-rich lipoprotein metabolism, and platelet activation), or to be unraveled (eg, in adipose tissue). The identification of novel transcriptional factors in the promoter region of human PCSK9 (eg, ChREBP) characterizes new mechanisms explaining how controlling intrahepatic glucose may be a therapeutic strategy to reduce cardiovascular risk in type 2 diabetes. Finally, the evidence describing PCSK9 as involved in cell proliferation and apoptosis raises the possibility of this protein being involved in cancer risk.


Subject(s)
Proprotein Convertase 9/physiology , Humans
12.
Curr Atheroscler Rep ; 24(5): 365-377, 2022 05.
Article in English | MEDLINE | ID: mdl-35274229

ABSTRACT

PURPOSE OF THE REVIEW: High-density lipoproteins (HDL) are responsible for the transport in plasma of a large fraction of circulating lipids, in part from tissue mobilization. The evaluation of HDL-associated cholesterol (HDL-C) has provided a standard method for assessing cardiovascular (CV) risk, as supported by many contributions on the mechanism of this arterial benefit. The present review article will attempt to investigate novel findings on the role and mechanism of HDL in CV risk determination. RECENT FINDINGS: The most recent research has been aimed to the understanding of how a raised functional capacity of HDL, rather than elevated levels per se, may be responsible for the postulated CV protection. Markedly elevated HDL-C levels appear instead to be associated to a raised coronary risk, indicative of a U-shaped relationship. While HDL-C reduction is definitely related to a raised CV risk, HDL-C elevations may be linked to non-vascular diseases, such as age-related macular disease. The description of anti-inflammatory, anti-oxidative and anti-infectious properties has indicated potential newer areas for diagnostic and therapeutic approaches. In the last two decades inconclusive data have arisen from clinical trials attempting to increase HDL-C pharmacologically or by way of recombinant protein infusions (most frequently with the mutant A-I Milano); prevention of stent occlusion or heart failure treatment have shown instead significant promise. Targeted clinical studies are still ongoing.


Subject(s)
Cardiovascular Diseases , Lipoproteins, HDL , Cardiovascular Diseases/prevention & control , Cholesterol, HDL , Humans
13.
Curr Atheroscler Rep ; 24(3): 161-169, 2022 03.
Article in English | MEDLINE | ID: mdl-35174437

ABSTRACT

PURPOSE OF REVIEW: Current guidelines for the management of arterial hypertension endorse ß-adrenergic receptor blocking agents (beta-blockers, BBs) as being particularly useful for hypertension in specific situations such as symptomatic angina, tachycardia, post-myocardial infarction, heart failure with reduced ejection fraction (HFrEF), and as an alternative to angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) in hypertensive women planning pregnancy or at least of child-bearing potential. One of the most common uses of BBs is in patients with a recent myocardial infarction, with or without hypertension. Although this one use is specifically in a setting of atherosclerotic cardiovascular disease (ASCVD), it is not primarily for atheroprevention, but rather for cases with impaired systolic function, and it is intended primarily to lessen adverse cardiac remodeling and worsening of congestive heart failure (CHF). The BB class consists of numerous agents which differ widely in pharmacologic properties and physiologic effects. These differences include selectivity for ß-adrenergic receptors and their subtypes, hydro- or lipophilicity, effects on blood pressure and heart rate, influence on lipoprotein and glucose metabolism, and direct impact on the artery wall, including platelet reactivity, endothelial function, infiltration of inflammatory cells and on inflammation per se, and on smooth muscle cell proliferation. Importantly, BBs are not commonly used for prevention of atherosclerosis or ASCVD per se. Many studies of early-generation BBs showed adverse effects on lipoprotein levels and metabolism of glucose and insulin and thus discouraged their use in atheroprevention. Nevertheless, newer BBs often have neutral or favorable metabolic effects on these important factors in ASCVD pathophysiology, and recent scientific studies now document direct beneficial effects of BBs on the artery wall. This document reviews both types of newer data, not only to encourage consideration of BB treatment to reduce ASCVD in the present, but also to call for future research to better explore the clinical settings in which BBs may be proven to have additional benefit in preventing ASCVD when added to the better-established treatments for dyslipidemia and diabetes. RECENT FINDINGS: Relatively recent publications have clarified the diversity among BBs regarding adverse, neutral, or favorable effects on lipoproteins (especially triglycerides (TG) and low-density lipoprotein (LDL)) and on glucose/insulin metabolism. Specifically, the newer BBs (metoprolol ER, carvedilol ER, bisoprolol, and nebivolol) are now documented to be metabolically beneficial. These new data are complex but instructive regarding potential mechanisms of the diverse effects of various BBs on metabolism. Further and more importantly, these new data refute the traditional, but now outmoded, concept that BBs are universally harmful metabolically and therefore must be used sparingly, if at all, for atheroprevention. Recent studies have also reported exciting new data regarding how certain BBs can reduce platelet adhesion and improve the function of the major cell types in the artery wall, including the endothelium, macrophages, and smooth muscle cells. Specifically, BBs can improve endothelial function by enhancing arterial vasodilation and by reducing monocyte adhesion and transmigration. Further, BBs can decrease numbers and activity of inflammatory cells, including decreasing proliferation of smooth muscle cells and their transformation into inflammatory cells. These data help with the crucial step of distinguishing among available BBs regarding their likely overall arterial effects, whether to accelerate or prevent the development of atherosclerosis. In this regard, there is even some limited published information beyond these intermediary steps, going directly to the clinically more important endpoints of atherosclerosis and ASCVD events. The negative metabolic effects observed with the use of traditional/earlier generations of BBs have discouraged use of any BBs to prevent ASCVD. These adverse effects are not seen, however, with newer BBs. Thus, BBs continue to be a useful component of combination regimens not only in the treatment of arterial hypertension, heart failure, and arrhythmia, but also potentially in the prevention of atherosclerosis and ASCVD. Despite this exciting potential, further research is greatly needed to better establish the possible benefits of the most promising BBs as they might work in combination with other better-established atheropreventive agents. Specifically, there is a need for randomized, prospective, cardiovascular outcome trials (CVOTs) in high-risk patients, adding a BB to background LDL-lowering (statins, etc.), TG-lowering (specifically icosapent ethyl, which reduces ASCVD in patients with high TG, although apparently not via TG-lowering), and/or anti-diabetic (sodium glucose transport-2 inhibitors, SGLT2i, and glucagon-like protein-1 receptor agonists, GLP1-RA) treatments, as indicated in a given subject population.


Subject(s)
Atherosclerosis , Heart Failure , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Female , Heart Failure/drug therapy , Humans , Prospective Studies , Stroke Volume
14.
Curr Atheroscler Rep ; 24(10): 791-801, 2022 10.
Article in English | MEDLINE | ID: mdl-35900636

ABSTRACT

PURPOSE OF REVIEW: The aim of creating an orally active non-statin cholesterol-lowering drug was achieved with bempedoic acid, a small linear molecule providing both a significant low-density lipoprotein cholesterol (LDL-C) reduction and an anti-inflammatory effect by decreasing high-sensitivity C-reactive protein. Bempedoic acid antagonizes ATP citrate-lyase, a cytosolic enzyme upstream of HMGCoA reductase which is the rate-limiting step of cholesterol biosynthesis. Bempedoic acid is a pro-drug converted to its active metabolite by very-long-chain acyl-CoA synthetase 1 which is present mostly in the liver and absent in skeletal muscles. This limits the risk of myalgia and myopathy. The remit of this review is to give clinical insights on the safety and efficacy of bempedoic acid and to understand for whom it should be prescribed. RECENT FINDINGS: Bempedoic acid with a single daily dose (180 mg) reduces LDL-C by a mean 24.5% when given alone, by 18% when given on top of a major statin and by 38-40% when given in a fixed-dose combination with ezetimibe. Bempedoic acid does not lead to the risk of new-onset diabetes, and moderately improves the glycaemic profile. The extensive knowledge on bempedoic acid mechanism, metabolism and side effects has led to an improved understanding of the potential benefits of this agent and offers a possible alternative to cardiologists and clinical practitioners somewhat worn out today by the occurrence of the muscular side effects of statins.


Subject(s)
Anticholesteremic Agents , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL , Dicarboxylic Acids/therapeutic use , Fatty Acids/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects
15.
Curr Atheroscler Rep ; 24(12): 995-1004, 2022 12.
Article in English | MEDLINE | ID: mdl-36383291

ABSTRACT

PURPOSE OF REVIEW: Since the clinical benefit of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors occurs in a setting of reducing low-density lipoprotein-cholesterol (LDL-C) to unprecedentedly low levels, it becomes of interest to investigate possible adverse effects pertaining to the risk of new-onset diabetes (NOD). RECENT FINDINGS: While safety results reported in either meta-analyses or cardiovascular outcome trials FOURIER (with evolocumab) and ODYSSEY (with alirocumab) did not rise the incidence of NOD, Mendelian randomization analyses were almost concordant in showing an increased risk of NOD. This evidence was in line with post-marketing safety reports highlighting that evolocumab and alirocumab were primarily related to mild hyperglycaemia rather than diabetes, with most of the hyperglycaemic events occurring during the first 6 months of treatment. Considering the different nature of genetic studies and of randomized controlled trials, with careful monitoring of patients, particularly in the earlier phases of treatment, and the identification of those more susceptible to develop NOD, treatment with PCSK9 inhibitors should be of minimal concern.


Subject(s)
Anticholesteremic Agents , Cardiovascular Diseases , Diabetes Mellitus , Humans , Proprotein Convertase 9/genetics , PCSK9 Inhibitors , Antibodies, Monoclonal/therapeutic use , Cardiovascular Diseases/drug therapy , Diabetes Mellitus/chemically induced , Diabetes Mellitus/drug therapy , Diabetes Mellitus/epidemiology , Anticholesteremic Agents/adverse effects
16.
Pharmacol Res ; 182: 106342, 2022 08.
Article in English | MEDLINE | ID: mdl-35798287

ABSTRACT

There is currently growing attention being paid to the role of elevated triglycerides (TGs) as important mediators of residual atherosclerotic cardiovascular disease (ASCVD) risk. This role is supported by genetic studies and by the persistent residual risk of ASCVD, even after intensive statin therapy. Although TG lowering drugs have shown conflicting results when tested in cardiovascular outcome trials, data from the REDUCE-IT study with the ethyl ester of ω-3 eicosapentaenoic acid (EPA) have revived hope in this area of research. The aim of the present review is to critically discuss the most recent large trials with ω-3 fatty acids (FAs) trying to elucidate mechanistic and trial-related differences, as in the case of REDUCE-IT and STRENGTH studies. The ω-3 FAs may lower cardiovascular risk through a number of pleiotropic mechanisms, e.g., by lowering blood pressure, by mediating antithrombotic effects, by providing precursors for the synthesis of specialized proresolving mediators that can inhibit inflammation or by modulating the lipid rafts enriched in cholesterol and sphingolipids. In conclusion, in a field fraught with uncertainties, the ω-3 FAs and especially high dose icosapent ethyl (the ethyl ester of EPA) are at present a most valuable therapeutic option to reduce the ASCVD risk.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Fatty Acids, Omega-3 , Atherosclerosis/drug therapy , Cardiovascular Diseases/prevention & control , Esters/therapeutic use , Fatty Acids, Omega-3/therapeutic use , Humans , Risk Factors , Triglycerides
17.
Pharmacol Res ; 184: 106439, 2022 10.
Article in English | MEDLINE | ID: mdl-36100012

ABSTRACT

Immediate and aggressive lipid lowering therapies after acute coronary syndromes (ACS) and percutaneous coronary interventions (PCI) are supported by the ESC/EAS dyslipidemia guidelines, recommending the initiation of high-intensity statin therapy within the first 1-4 days of hospitalization. However, whether non statin lipid-lowering agents, added to statin treatment, could produce a further reduction in the risk of major adverse cardiovascular events (MACE) is still unknown. Thus, the efficacy of early treatment post-ACS with monoclonal antibodies (mAbs) anti PCSK9, evolocumab and alirocumab, is under investigation. The rationale to explore the rapid and aggressive pharmacological intervention with PCSK9 mAbs is supported by at least five confirmatory data in ACS: 1) circulating PCSK9 levels are raised during ACS 2) PCSK9 may stimulate platelet reactivity, this last being pivotal in the recurrence of ischemic events; 3) PCSK9 is associated with intraplaque inflammation, macrophage activation and endothelial dysfunction; 4) PCSK9 concentrations are associated with inflammation in the acute phase of ACS; and 5) statins raise PCSK9 levels promptly and, at times, dramatically. In this scenario, appropriate pharmacodynamic characteristics of anti PCSK9 therapies are a prerequisite for an effective response. Monoclonal antibodies act on circulating PCSK9 with a direct and rapid binding by blocking the interaction with the low-density lipoprotein receptor (LDLR). Evolocumab and alirocumab show a very rapid (within 4 h) and effective suppression of circulating unbound PCSK9 (- 95 % ÷ - 97 %). This inhibition results in a significant reduction of LDL-cholesterol (LDL-C) after 48 h (- 35 %) post injection with a full effect after 7-10 days (55-75 %). The complete and swift inhibitory action by evolocumab and alirocumab could have a potential clinical impact in ACS patients, also considering their potential inhibition of PCSK9 within the atherosclerotic plaque. Thus, administration of evolocumab or alirocumab is effective in lowering LDL-C levels in ACS, although the efficacy to prevent further cardiovascular (CV) events is still undetermined. The answer to this question will be provided by the ongoing clinical trials with evolocumab and alirocumab in ACS. In the present review we will discuss the pharmacological and biological rationale supporting the potential use of PCSK9 mAbs in ACS patients and the emerging evidence of evolocumab and alirocumab treatment in this clinical setting.


Subject(s)
Acute Coronary Syndrome , Anticholesteremic Agents , Antineoplastic Agents, Immunological , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Percutaneous Coronary Intervention , Acute Coronary Syndrome/drug therapy , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Anticholesteremic Agents/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Cholesterol, LDL , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation/drug therapy , Proprotein Convertase 9/metabolism , Treatment Outcome
18.
Eur Heart J Suppl ; 24(Suppl I): I72-I75, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36380804

ABSTRACT

Identified by Berg in 1963, lipoprotein(a) represents a key contemporary residual risk pathway in atherosclerotic cardiovascular disease (ASCVD) secondary prevention. Indeed, epidemiological and genetic studies have undoubtedly demonstrated that lipoprotein(a) is one of the strongest causal risk factors of ASCVD. Although a risk threshold has been set between 30 and 50 mg/dL, depending on the ethnicity, a linear risk gradient across the distribution has been demonstrated. In the context of the atherosclerotic process, hyperlipoproteinaemia(a) contributes to the atherosclerotic plaque formation by deposition of cholesterol in the same manner as low-density lipoprotein (LDL) cholesterol, due to the LDL particle component of lipoprotein(a). Lipoprotein(a) accumulates in human coronary and carotid atherosclerotic lesions. High concentrations of lipoprotein(a) are associated with accelerated progression of the necrotic core, but not with coronary calcium score (CAC), although in the latter case, the evaluation of lipoprotein(a) can overcome the potential limitation of CAC to capture the totality of ASCVD risk in asymptomatic individuals. Finally, in the absence of a pharmacological approach to lower lipoprotein(a) to the extent required to achieve a cardiovascular benefit, implementation strategies that increase awareness among the population, patients, and healthcare providers on the importance of lipoprotein(a) in the development of ASCVD are eagerly needed.

19.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628225

ABSTRACT

The cardiovascular benefit of statins is well established. However, only 20% of high-risk patients remain adequately adherent after 5 years of treatment. Among reasons for discontinuation, statin associated-muscle pain symptoms are the most prevalent. Aim of the present study was to evaluate the impact of high dose atorvastatin on skeletal muscle mitochondrial activity, aerobic and anaerobic exercise, and axonal excitability in a murine model of atherosclerosis. ApoE-/- mice were fed 12 weeks a high-fat high-cholesterol diet alone or containing atorvastatin (40 mg/Kg/day). Outcomes were the evaluation of muscle mitochondrial functionality, locomotion, grip test, and axonal excitability (compound action potential recording analysis of Aα motor propioceptive, Aß mechanoceptive and C nociceptive fibres). Atorvastatin led to a reduction in muscle mitochondrial biogenesis and mitochondrial ATP production. It did not affect muscular strength but led to a time-dependent motor impairment. Atorvastatin altered the responsiveness of mechanoceptive and nociceptive fibres, respectively, the Aß and C fibres. These findings point out to a mild sensitization on mechanical, tactile and pain sensitivity. In conclusion, although the prevalence of muscular side effects from statins may be overestimated, understanding of the underlying mechanisms can help improve the therapeutic approach and reassure adherence in patients needing-to-be-treated.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscular Diseases , Animals , Apolipoproteins E/genetics , Apolipoproteins E/pharmacology , Atorvastatin/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Locomotion , Mice , Muscle, Skeletal , Muscular Diseases/chemically induced
20.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361853

ABSTRACT

Vascular smooth muscle cells (VSMCs) are key participants in both early- and late-stage atherosclerosis and influence neighbouring cells possibly by means of bioactive molecules, some of which are packed into extracellular vesicles (EVs). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed and secreted by VSMCs. This study aimed to unravel the role of PCSK9 on VSMCs-derived EVs in terms of content and functionality. EVs were isolated from human VSMCs overexpressing human PCSK9 (VSMCPCSK9-EVs) and tested on endothelial cells, monocytes, macrophages and in a model of zebrafish embryos. Compared to EVs released from wild-type VSMCs, VSMCPCSK9-EVs caused a rise in the expression of adhesion molecules in endothelial cells and of pro-inflammatory cytokines in monocytes. These acquired an increased migratory capacity, a reduced oxidative phosphorylation and secreted proteins involved in immune response and immune effector processes. Concerning macrophages, VSMCPCSK9-EVs enhanced inflammatory milieu and uptake of oxidized low-density lipoproteins, whereas the migratory capacity was reduced. When injected into zebrafish embryos, VSMCPCSK9-EVs favoured the recruitment of macrophages toward the site of injection. The results of the present study provide evidence that PCSK9 plays an inflammatory role by means of EVs, at least by those derived from smooth muscle cells of vascular origin.


Subject(s)
Extracellular Vesicles , Proprotein Convertase 9 , Animals , Humans , Proprotein Convertase 9/metabolism , Muscle, Smooth, Vascular/metabolism , Zebrafish/metabolism , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Extracellular Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL