Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 175(1): 159-170.e16, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30241606

ABSTRACT

Most high-grade serous ovarian cancer (HGSOC) patients develop resistance to platinum-based chemotherapy and recur, but 15% remain disease free over a decade. To discover drivers of long-term survival, we quantitatively analyzed the proteomes of platinum-resistant and -sensitive HGSOC patients from minute amounts of formalin-fixed, paraffin-embedded tumors. This revealed cancer/testis antigen 45 (CT45) as an independent prognostic factor associated with a doubling of disease-free survival in advanced-stage HGSOC. Phospho- and interaction proteomics tied CT45 to DNA damage pathways through direct interaction with the PP4 phosphatase complex. In vitro, CT45 regulated PP4 activity, and its high expression led to increased DNA damage and platinum sensitivity. CT45-derived HLA class I peptides, identified by immunopeptidomics, activate patient-derived cytotoxic T cells and promote tumor cell killing. This study highlights the power of clinical cancer proteomics to identify targets for chemo- and immunotherapy and illuminate their biological roles.


Subject(s)
Antigens, Neoplasm/physiology , Drug Resistance, Neoplasm/genetics , Proteomics/methods , Aged , Amino Acid Sequence/genetics , Antineoplastic Agents/therapeutic use , DNA Methylation/drug effects , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunotherapy/methods , Kaplan-Meier Estimate , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/drug therapy , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/physiology , Prognosis
2.
Mol Cell ; 82(18): 3350-3365.e7, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36049481

ABSTRACT

It has been proposed that ATR kinase senses the completion of DNA replication to initiate the S/G2 transition. In contrast to this model, we show here that the TRESLIN-MTBP complex prevents a premature entry into G2 from early S-phase independently of ATR/CHK1 kinases. TRESLIN-MTBP acts transiently at pre-replication complexes (preRCs) to initiate origin firing and is released after the subsequent recruitment of CDC45. This dynamic behavior of TRESLIN-MTBP implements a monitoring system that checks the activation of replication forks and senses the rate of origin firing to prevent the entry into G2. This system detects the decline in the number of origins of replication that naturally occurs in very late S, which is the signature that cells use to determine the completion of DNA replication and permit the S/G2 transition. Our work introduces TRESLIN-MTBP as a key player in cell-cycle control independent of canonical checkpoints.


Subject(s)
Cell Cycle Proteins , DNA Replication , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 1/genetics , DNA-Binding Proteins/genetics
3.
EMBO J ; 41(9): e110145, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35349166

ABSTRACT

Conjugation of ubiquitin (Ub) to numerous substrate proteins regulates virtually all cellular processes. Eight distinct ubiquitin polymer linkages specifying different functional outcomes are generated in cells. However, the roles of some atypical poly-ubiquitin topologies, in particular linkages via lysine 27 (K27), remain poorly understood due to a lack of tools for their specific detection and manipulation. Here, we adapted a cell-based ubiquitin replacement strategy to enable selective and conditional abrogation of K27-linked ubiquitylation, revealing that this ubiquitin linkage type is essential for proliferation of human cells. We demonstrate that K27-linked ubiquitylation is predominantly a nuclear modification whose ablation deregulates nuclear ubiquitylation dynamics and impairs cell cycle progression in an epistatic manner with inactivation of the ATPase p97/VCP. Moreover, we show that a p97-proteasome pathway model substrate (Ub(G76V)-GFP) is directly modified by K27-linked ubiquitylation, and that disabling the formation of K27-linked ubiquitin signals or blocking their decoding via overexpression of the K27 linkage-specific binder UCHL3 impedes Ub(G76V)-GFP turnover at the level of p97 function. Our findings suggest a critical role of K27-linked ubiquitylation in supporting cell fitness by facilitating p97-dependent processing of ubiquitylated nuclear proteins.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Cell Nucleus/metabolism , Cell Proliferation , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitination
4.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177924

ABSTRACT

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Subject(s)
COVID-19 , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Peptides/metabolism , RNA-Binding Proteins/genetics , SARS-CoV-2
5.
Mol Cell Proteomics ; 23(5): 100750, 2024 May.
Article in English | MEDLINE | ID: mdl-38513891

ABSTRACT

Spatial tissue proteomics integrating whole-slide imaging, laser microdissection, and ultrasensitive mass spectrometry is a powerful approach to link cellular phenotypes to functional proteome states in (patho)physiology. To be applicable to large patient cohorts and low sample input amounts, including single-cell applications, loss-minimized and streamlined end-to-end workflows are key. We here introduce an automated sample preparation protocol for laser microdissected samples utilizing the cellenONE robotic system, which has the capacity to process 192 samples in 3 h. Following laser microdissection collection directly into the proteoCHIP LF 48 or EVO 96 chip, our optimized protocol facilitates lysis, formalin de-crosslinking, and tryptic digest of low-input archival tissue samples. The seamless integration with the Evosep ONE LC system by centrifugation allows 'on-the-fly' sample clean-up, particularly pertinent for laser microdissection workflows. We validate our method in human tonsil archival tissue, where we profile proteomes of spatially-defined B-cell, T-cell, and epithelial microregions of 4000 µm2 to a depth of ∼2000 proteins and with high cell type specificity. We finally provide detailed equipment templates and experimental guidelines for broad accessibility.


Subject(s)
Laser Capture Microdissection , Proteomics , Workflow , Humans , Proteomics/methods , Laser Capture Microdissection/methods , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Automation , Proteome , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Mass Spectrometry/methods , T-Lymphocytes/metabolism , T-Lymphocytes/cytology
6.
Nature ; 569(7758): 723-728, 2019 05.
Article in English | MEDLINE | ID: mdl-31043742

ABSTRACT

High-grade serous carcinoma has a poor prognosis, owing primarily to its early dissemination throughout the abdominal cavity. Genomic and proteomic approaches have provided snapshots of the proteogenomics of ovarian cancer1,2, but a systematic examination of both the tumour and stromal compartments is critical in understanding ovarian cancer metastasis. Here we develop a label-free proteomic workflow to analyse as few as 5,000 formalin-fixed, paraffin-embedded cells microdissected from each compartment. The tumour proteome was stable during progression from in situ lesions to metastatic disease; however, the metastasis-associated stroma was characterized by a highly conserved proteomic signature, prominently including the methyltransferase nicotinamide N-methyltransferase (NNMT) and several of the proteins that it regulates. Stromal NNMT expression was necessary and sufficient for functional aspects of the cancer-associated fibroblast (CAF) phenotype, including the expression of CAF markers and the secretion of cytokines and oncogenic extracellular matrix. Stromal NNMT expression supported ovarian cancer migration, proliferation and in vivo growth and metastasis. Expression of NNMT in CAFs led to depletion of S-adenosyl methionine and reduction in histone methylation associated with widespread gene expression changes in the tumour stroma. This work supports the use of ultra-low-input proteomics to identify candidate drivers of disease phenotypes. NNMT is a central, metabolic regulator of CAF differentiation and cancer progression in the stroma that may be therapeutically targeted.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Nicotinamide N-Methyltransferase/metabolism , Proteomics , Cancer-Associated Fibroblasts/enzymology , Cell Line, Tumor , Cells, Cultured , DNA Methylation , Disease Progression , Female , Histones/chemistry , Histones/metabolism , Humans , Neoplasm Metastasis , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phenotype , Prognosis , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism
7.
Br J Cancer ; 130(8): 1249-1260, 2024 May.
Article in English | MEDLINE | ID: mdl-38361045

ABSTRACT

BACKGROUND: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers. METHODS: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function. RESULTS: We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level. AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2 expression was higher in recurrent samples (p = 0.009) and protein expression in primary tumours was associated with worse patient survival (p = 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2. CONCLUSIONS: Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling, respectively, and might lead to establishing them as biomarkers in HGSOC.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Female , Humans , Prognosis , Ovarian Neoplasms/pathology , Gene Expression Profiling , Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/pathology , Membrane Proteins/genetics , Repressor Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics
8.
Gastroenterology ; 165(1): 121-132.e5, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36966943

ABSTRACT

BACKGROUND & AIMS: Colonic adenomatous polyps, or adenomas, are frequent precancerous lesions and the origin of most cases of colorectal adenocarcinoma. However, we know from epidemiologic studies that although most colorectal cancers (CRCs) originate from adenomas, only a small fraction of adenomas (3%-5%) ever progress to cancer. At present, there are no molecular markers to guide follow-up surveillance programs. METHODS: We profiled, by mass spectrometry-based proteomics combined with machine learning analysis, a selected cohort of formalin-fixed, paraffin-embedded high-grade (HG) adenomas with long clinical follow-up, collected as part of the Danish national screening program. We grouped subjects in the cohort according to their subsequent history of findings: a nonmetachronous advanced neoplasia group (G0), with no new HG adenomas or CRCs up to 10 years after polypectomy, and a metachronous advanced neoplasia group (G1) where individuals developed a new HG adenoma or CRC within 5 years of diagnosis. RESULTS: We generated a proteome dataset from 98 selected HG adenoma samples, including 20 technical replicates, of which 45 samples belonged to the nonmetachronous advanced neoplasia group and 53 to the metachronous advanced neoplasia group. The clear distinction of these 2 groups seen in a uniform manifold approximation and projection plot indicated that the information contained within the abundance of the ∼5000 proteins was sufficient to predict the future occurrence of HG adenomas or development of CRC. CONCLUSIONS: We performed an in-depth analysis of quantitative proteomic data from 98 resected adenoma samples using various novel algorithms and statistical packages and found that their proteome can predict development of metachronous advanced lesions and progression several years in advance.


Subject(s)
Adenoma , Colonic Polyps , Colorectal Neoplasms , Neoplasms, Second Primary , Humans , Proteome , Proteomics , Colorectal Neoplasms/pathology , Colonic Polyps/pathology , Adenoma/pathology , Neoplasms, Second Primary/pathology , Colonoscopy , Risk Factors
9.
EMBO J ; 38(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30782962

ABSTRACT

Kinetochore localized Mad1 is essential for generating a "wait anaphase" signal during mitosis, hereby ensuring accurate chromosome segregation. Inconsistent models for the function and quantitative contribution of the two mammalian Mad1 kinetochore receptors: Bub1 and the Rod-Zw10-Zwilch (RZZ) complex exist. By combining genome editing and RNAi, we achieve penetrant removal of Bub1 and Rod in human cells, which reveals that efficient checkpoint signaling depends on the integrated activities of these proteins. Rod removal reduces the proximity of Bub1 and Mad1, and we can bypass the requirement for Rod by tethering Mad1 to kinetochores or increasing the strength of the Bub1-Mad1 interaction. We find that Bub1 has checkpoint functions independent of Mad1 localization that are supported by low levels of Bub1 suggesting a catalytic function. In conclusion, our results support an integrated model for the Mad1 receptors in which the primary role of RZZ is to localize Mad1 at kinetochores to generate the Mad1-Bub1 complex.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Kinetochores , M Phase Cell Cycle Checkpoints , Microtubule-Associated Proteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , HeLa Cells , Humans , Microtubule-Associated Proteins/genetics , Mitosis , Polypyrimidine Tract-Binding Protein/genetics , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Spindle Apparatus
10.
Mol Syst Biol ; 18(3): e10798, 2022 03.
Article in English | MEDLINE | ID: mdl-35226415

ABSTRACT

Single-cell technologies are revolutionizing biology but are today mainly limited to imaging and deep sequencing. However, proteins are the main drivers of cellular function and in-depth characterization of individual cells by mass spectrometry (MS)-based proteomics would thus be highly valuable and complementary. Here, we develop a robust workflow combining miniaturized sample preparation, very low flow-rate chromatography, and a novel trapped ion mobility mass spectrometer, resulting in a more than 10-fold improved sensitivity. We precisely and robustly quantify proteomes and their changes in single, FACS-isolated cells. Arresting cells at defined stages of the cell cycle by drug treatment retrieves expected key regulators. Furthermore, it highlights potential novel ones and allows cell phase prediction. Comparing the variability in more than 430 single-cell proteomes to transcriptome data revealed a stable-core proteome despite perturbation, while the transcriptome appears stochastic. Our technology can readily be applied to ultra-high sensitivity analyses of tissue material, posttranslational modifications, and small molecule studies from small cell counts to gain unprecedented insights into cellular heterogeneity in health and disease.


Subject(s)
Proteome , Proteomics , Mass Spectrometry/methods , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics/methods , Workflow
11.
EMBO Rep ; 21(10): e50662, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32776417

ABSTRACT

Dominant missense mutations in the human serine protease FAM111A underlie perinatally lethal gracile bone dysplasia and Kenny-Caffey syndrome, yet how FAM111A mutations lead to disease is not known. We show that FAM111A proteolytic activity suppresses DNA replication and transcription by displacing key effectors of these processes from chromatin, triggering rapid programmed cell death by Caspase-dependent apoptosis to potently undermine cell viability. Patient-associated point mutations in FAM111A exacerbate these phenotypes by hyperactivating its intrinsic protease activity. Moreover, FAM111A forms a complex with the uncharacterized homologous serine protease FAM111B, point mutations in which cause a hereditary fibrosing poikiloderma syndrome, and we demonstrate that disease-associated FAM111B mutants display amplified proteolytic activity and phenocopy the cellular impact of deregulated FAM111A catalytic activity. Thus, patient-associated FAM111A and FAM111B mutations may drive multisystem disorders via a common gain-of-function mechanism that relieves inhibitory constraints on their protease activities to powerfully undermine cellular fitness.


Subject(s)
Bone Diseases, Developmental , Hyperostosis, Cortical, Congenital , Cell Cycle Proteins/genetics , Gain of Function Mutation , Humans , Mutation , Peptide Hydrolases , Receptors, Virus
12.
J Pathol ; 251(1): 100-112, 2020 05.
Article in English | MEDLINE | ID: mdl-32154592

ABSTRACT

Formalin fixation and paraffin-embedding (FFPE) is the most common method to preserve human tissue for clinical diagnosis, and FFPE archives represent an invaluable resource for biomedical research. Proteins in FFPE material are stable over decades but their efficient extraction and streamlined analysis by mass spectrometry (MS)-based proteomics has so far proven challenging. Herein we describe a MS-based proteomic workflow for quantitative profiling of large FFPE tissue cohorts directly from histopathology glass slides. We demonstrate broad applicability of the workflow to clinical pathology specimens and variable sample amounts, including low-input cancer tissue isolated by laser microdissection. Using state-of-the-art data dependent acquisition (DDA) and data independent acquisition (DIA) MS workflows, we consistently quantify a large part of the proteome in 100 min single-run analyses. In an adenoma cohort comprising more than 100 samples, total workup took less than a day. We observed a moderate trend towards lower protein identification in long-term stored samples (>15 years), but clustering into distinct proteomic subtypes was independent of archival time. Our results underscore the great promise of FFPE tissues for patient phenotyping using unbiased proteomics and they prove the feasibility of analyzing large tissue cohorts in a robust, timely, and streamlined manner. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms/pathology , Proteome/metabolism , Proteomics , Chromatography, Liquid/methods , Cohort Studies , Humans , Paraffin Embedding/methods , Proteomics/methods , Tandem Mass Spectrometry/methods , Tissue Fixation/methods
14.
Hypertension ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39440423

ABSTRACT

BACKGROUND: Preeclampsia is a severe hypertensive disorder in pregnancy that causes preterm delivery, maternal and fetal morbidity, mortality, and life-long sequelae. Understanding the pathogenesis of preeclampsia is a critical first step toward protecting mother and child from this syndrome and increased risk of cardiovascular disease later in life. However, effective early predictive tests and therapies for preeclampsia are scarce. METHODS: To identify novel markers and signaling pathways for early onset preeclampsia, we profiled human maternal-fetal interface units (fetal villi and maternal decidua) from early onset preeclampsia and healthy controls using single-nucleus RNA sequencing combined with spatial transcriptomics. The placental syncytiotrophoblast is in direct contact with maternal blood and forms the barrier between fetal and maternal circulation. RESULTS: We identified different transcriptomic states of the endocrine syncytiotrophoblast nuclei with patterns of dysregulation associated with a senescence-associated secretory phenotype and a spatial dysregulation of senescence in the placental trophoblast layer. Elevated senescence markers were validated in placental tissues of clinical multicenter cohorts. Importantly, several secreted senescence-associated secretory phenotype factors were elevated in maternal blood already in the first trimester. We verified the secreted senescence markers, PAI-1 (plasminogen activator inhibitor 1) and activin A, as identified in our single-nucleus RNA sequencing model as predictive markers before clinical preeclampsia diagnosis. CONCLUSIONS: This indicates that increased syncytiotrophoblast senescence appears weeks before clinical manifestation of early onset preeclampsia, suggesting that the dysregulated preeclamptic placenta starts with higher cell maturation resulting in premature and increased senescence-associated secretory phenotype release. These senescence-associated secretory phenotype markers may serve as an additional early diagnostic tool for this syndrome.

15.
Cell Syst ; 14(11): 1002-1014.e5, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37909047

ABSTRACT

Spatial proteomics combining microscopy-based cell phenotyping with ultrasensitive mass-spectrometry-based proteomics is an emerging and powerful concept to study cell function and heterogeneity in (patho)physiology. However, optimized workflows that preserve morphological information for phenotype discovery and maximize proteome coverage of few or even single cells from laser microdissected tissue are currently lacking. Here, we report a robust and scalable workflow for the proteomic analysis of ultra-low-input archival material. Benchmarking in murine liver resulted in up to 2,000 quantified proteins from single hepatocyte contours and nearly 5,000 proteins from 50-cell regions. Applied to human tonsil, we profiled 146 microregions including T and B lymphocyte niches and quantified cell-type-specific markers, cytokines, and transcription factors. These data also highlighted proteome dynamics within activated germinal centers, illuminating sites undergoing B cell proliferation and somatic hypermutation. This approach has broad implications in biomedicine, including early disease profiling and drug target and biomarker discovery. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Proteome , Proteomics , Humans , Animals , Mice , Proteome/metabolism , Proteomics/methods , Mass Spectrometry/methods
16.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693415

ABSTRACT

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1 and FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and have delayed disease onset in vivo. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins for efficient infection and provides molecular insight to the possible underlying molecular defects in fragile X syndrome.

17.
J Biol Chem ; 286(11): 8999-9008, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21212271

ABSTRACT

The Helicobacter pylori protein CagA (cytotoxin-associated gene A) is associated with an increased risk for gastric cancer formation. After attachment to epithelial cells, the bacteria inject CagA via a type IV secretion apparatus into host cells, where it exerts its biological activity. Host cell responses to intracellular CagA have been linked exclusively to signaling motifs in the C terminus of the CagA protein. Little is known about the functional role of the remaining CagA protein. Using transgenic expression of CagA mutants in epithelial cells, we were able to identify a novel CagA inhibitory domain at the N terminus consisting of the first 200 amino acids. This domain localizes to cell-cell contacts and increases the rate and strength of cell-cell adhesion in epithelial cells. Thus, it compensates for the loss of cell-cell adhesion induced by the C terminus of the CagA protein. Consistent with its stabilizing role on cell-cell adhesion, the CagA N terminus domain reduces the CagA-induced ß-catenin transcriptional activity in the nucleus. Furthermore, it inhibits apical surface constriction and cell elongations, host cell phenotypes induced by the C terminus in polarized epithelia. Therefore, our study suggests that CagA contains an intrinsic inhibitory domain that reduces host cell responses to CagA, which have been associated with the formation of cancer.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Epithelial Cells/microbiology , Helicobacter pylori/physiology , Host-Pathogen Interactions , Signal Transduction , Amino Acid Motifs , Animals , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Dogs , Epithelial Cells/metabolism , Mutation , Protein Structure, Tertiary , Risk Factors , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/microbiology , Transcription, Genetic/genetics , beta Catenin/biosynthesis , beta Catenin/genetics
18.
Nat Biotechnol ; 40(5): 692-702, 2022 05.
Article in English | MEDLINE | ID: mdl-35102292

ABSTRACT

Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.


Subject(s)
Knowledge Bases , Precision Medicine/methods , Proteomics , Algorithms , Decision Making, Computer-Assisted , Machine Learning , Pattern Recognition, Automated , Precision Medicine/standards , Proteomics/standards , Proteomics/statistics & numerical data
19.
Nat Neurosci ; 25(7): 944-955, 2022 07.
Article in English | MEDLINE | ID: mdl-35726057

ABSTRACT

Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which causes cumulative disability and is refractory to current treatments. Drug development to prevent disease progression is an urgent clinical need yet is constrained by an incomplete understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive MS pathogenesis and traced their origin in relation to spatially distributed stages of neurodegeneration. By resolving ligand-receptor interactions in local microenvironments, we discovered defunct trophic and anti-inflammatory intercellular communications within areas of early neuronal decline. Proteins associated with neuronal damage in patient samples showed mechanistic concordance with published in vivo knockdown and central nervous system (CNS) disease models, supporting their causal role and value as potential therapeutic targets in progressive MS. Our findings provide a new framework for drug development strategies, rooted in an understanding of the complex cellular and signaling dynamics in human diseased tissue that facilitate this debilitating disease.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis , Central Nervous System Diseases/complications , Disease Progression , Humans , Multiple Sclerosis/pathology , Neurons/metabolism , Proteomics
20.
Nat Biotechnol ; 40(8): 1231-1240, 2022 08.
Article in English | MEDLINE | ID: mdl-35590073

ABSTRACT

Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.


Subject(s)
Melanoma , Proteomics , Humans , Laser Capture Microdissection/methods , Mass Spectrometry/methods , Melanoma/genetics , Proteome/chemistry , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL