Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Methods ; 21(9): 1693-1701, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39271806

ABSTRACT

Cryo-focused ion beam milling has substantially advanced our understanding of molecular processes by opening windows into cells. However, applying this technique to complex samples, such as tissues, has presented considerable technical challenges. Here we introduce an innovative adaptation of the cryo-lift-out technique, serialized on-grid lift-in sectioning for tomography (SOLIST), addressing these limitations. SOLIST enhances throughput, minimizes ice contamination and improves sample stability for cryo-electron tomography. It thereby facilitates the high-resolution imaging of a wide range of specimens. We illustrate these advantages on reconstituted liquid-liquid phase-separated droplets, brain organoids and native tissues from the mouse brain, liver and heart. With SOLIST, cellular processes can now be investigated at molecular resolution directly in native tissue. Furthermore, our method has a throughput high enough to render cryo-lift-out a competitive tool for structural biology. This opens new avenues for unprecedented insights into cellular function and structure in health and disease, a 'biopsy at the nanoscale'.


Subject(s)
Cryoelectron Microscopy , Electron Microscope Tomography , Animals , Mice , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Brain/diagnostic imaging , Liver/cytology , Liver/diagnostic imaging , Organoids , Biopsy/methods
2.
Nature ; 578(7796): 627-630, 2020 02.
Article in English | MEDLINE | ID: mdl-32025030

ABSTRACT

Thyroglobulin (TG) is the protein precursor of thyroid hormones, which are essential for growth, development and the control of metabolism in vertebrates1,2. Hormone synthesis from TG occurs in the thyroid gland via the iodination and coupling of pairs of tyrosines, and is completed by TG proteolysis3. Tyrosine proximity within TG is thought to enable the coupling reaction but hormonogenic tyrosines have not been clearly identified, and the lack of a three-dimensional structure of TG has prevented mechanistic understanding4. Here we present the structure of full-length human thyroglobulin at a resolution of approximately 3.5 Å, determined by cryo-electron microscopy. We identified all of the hormonogenic tyrosine pairs in the structure, and verified them using site-directed mutagenesis and in vitro hormone-production assays using human TG expressed in HEK293T cells. Our analysis revealed that the proximity, flexibility and solvent exposure of the tyrosines are the key characteristics of hormonogenic sites. We transferred the reaction sites from TG to an engineered tyrosine donor-acceptor pair in the unrelated bacterial maltose-binding protein (MBP), which yielded hormone production with an efficiency comparable to that of TG. Our study provides a framework to further understand the production and regulation of thyroid hormones.


Subject(s)
Cryoelectron Microscopy , Thyroglobulin/chemistry , Thyroglobulin/ultrastructure , Bacterial Proteins/chemistry , HEK293 Cells , Humans , Maltose-Binding Proteins/chemistry , Models, Molecular , Mutation , Reproducibility of Results , Solvents/chemistry , Thyroglobulin/genetics , Thyroid Hormones/biosynthesis , Thyroid Hormones/metabolism , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33526596

ABSTRACT

The RNA polymerase inhibitor favipiravir is currently in clinical trials as a treatment for infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), despite limited information about the molecular basis for its activity. Here we report the structure of favipiravir ribonucleoside triphosphate (favipiravir-RTP) in complex with the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) bound to a template:primer RNA duplex, determined by electron cryomicroscopy (cryoEM) to a resolution of 2.5 Å. The structure shows clear evidence for the inhibitor at the catalytic site of the enzyme, and resolves the conformation of key side chains and ions surrounding the binding pocket. Polymerase activity assays indicate that the inhibitor is weakly incorporated into the RNA primer strand, and suppresses RNA replication in the presence of natural nucleotides. The structure reveals an unusual, nonproductive binding mode of favipiravir-RTP at the catalytic site of SARS-CoV-2 RdRp, which explains its low rate of incorporation into the RNA primer strand. Together, these findings inform current and future efforts to develop polymerase inhibitors for SARS coronaviruses.


Subject(s)
Amides/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Enzyme Inhibitors/pharmacology , Pyrazines/pharmacology , SARS-CoV-2/ultrastructure , Amides/chemistry , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy/methods , Enzyme Inhibitors/chemistry , Pyrazines/chemistry , Ribonucleotides/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Single Molecule Imaging/methods
4.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362347

ABSTRACT

GLUT1 deficiency syndrome (GLUT1DS1; OMIM #606777) is a rare genetic metabolic disease, characterized by infantile-onset epileptic encephalopathy, global developmental delay, progressive microcephaly, and movement disorders (e.g., spasticity and dystonia). It is caused by heterozygous mutations in the SLC2A1 gene, which encodes the GLUT1 protein, a glucose transporter across the blood-brain barrier (BBB). Most commonly, these variants arise de novo resulting in sporadic cases, although several familial cases with AD inheritance pattern have been described. Twenty-seven Italian pediatric patients, clinically suspect of GLUT1DS from both sporadic and familial cases, have been enrolled. We detected by trios sequencing analysis 25 different variants causing GLUT1DS. Of these, 40% of the identified variants (10 out of 25) had never been reported before, including missense, frameshift, and splice site variants. Their structural mapping on the X-ray structure of GLUT1 strongly suggested the potential pathogenic effects of these novel disease-related mutations, broadening the genotypic spectrum heterogeneity found in the SLC2A1 gene. Moreover, 24% is located in a vulnerable region of the GLUT1 protein that involves transmembrane 4 and 5 helices encoded by exon 4, confirming a mutational hotspot in the SLC2A1 gene. Lastly, we investigated possible correlations between mutation type and clinical and biochemical data observed in our GLUT1DS cohort, revealing that splice site and frameshift variants are related to a more severe phenotype and low CSF parameters.


Subject(s)
Carbohydrate Metabolism, Inborn Errors , Humans , Glucose Transporter Type 1/genetics , Carbohydrate Metabolism, Inborn Errors/genetics , Monosaccharide Transport Proteins/genetics , Mutation , Molecular Biology
5.
J Am Chem Soc ; 143(40): 16589-16598, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34597506

ABSTRACT

Self-assembling single-chain amphiphiles available in the prebiotic environment likely played a fundamental role in the advent of primitive cell cycles. However, the instability of prebiotic fatty acid-based membranes to temperature and pH seems to suggest that primitive cells could only host prebiotically relevant processes in a narrow range of nonfluctuating environmental conditions. Here we propose that membrane phase transitions, driven by environmental fluctuations, enabled the generation of daughter protocells with reshuffled content. A reversible membrane-to-oil phase transition accounts for the dissolution of fatty acid-based vesicles at high temperatures and the concomitant release of protocellular content. At low temperatures, fatty acid bilayers reassemble and encapsulate reshuffled material in a new cohort of protocells. Notably, we find that our disassembly/reassembly cycle drives the emergence of functional RNA-containing primitive cells from parent nonfunctional compartments. Thus, by exploiting the intrinsic instability of prebiotic fatty acid vesicles, our results point at an environmentally driven tunable prebiotic process, which supports the release and reshuffling of oligonucleotides and membrane components, potentially leading to a new generation of protocells with superior traits. In the absence of protocellular transport machinery, the environmentally driven disassembly/assembly cycle proposed herein would have plausibly supported protocellular content reshuffling transmitted to primitive cell progeny, hinting at a potential mechanism important to initiate Darwinian evolution of early life forms.


Subject(s)
Artificial Cells
6.
PLoS Pathog ; 12(6): e1005636, 2016 06.
Article in English | MEDLINE | ID: mdl-27304209

ABSTRACT

Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5' end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase.


Subject(s)
Endonucleases/chemistry , Endonucleases/metabolism , Lassa virus/enzymology , Orthohantavirus/enzymology , Arenavirus/chemistry , Arenavirus/enzymology , Calorimetry , Crystallography, X-Ray , Orthohantavirus/chemistry , Lassa virus/chemistry , Orthobunyavirus/chemistry , Orthobunyavirus/enzymology , Protein Conformation , RNA Caps/metabolism , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/metabolism
7.
Front Endocrinol (Lausanne) ; 14: 1127312, 2023.
Article in English | MEDLINE | ID: mdl-37008944

ABSTRACT

Introduction: FOXE1 is required for thyroid function and its homozygous mutations cause a rare syndromic form of congenital hypothyroidism (CH). FOXE1 has a polymorphic polyalanine tract whose involvement in thyroid pathology is controversial. Starting from genetic studies in a CH family, we explored the functional role and involvement of FOXE1 variations in a large CH population. Methods: We applied NGS screening to a large CH family and a cohort of 1752 individuals and validated these results by in silico modeling and in vitro experiments. Results: A new heterozygous FOXE1 variant segregated with 14-Alanine tract homozygosity in 5 CH siblings with athyreosis. The p.L107V variant demonstrated to significantly reduce the FOXE1 transcriptional activity. The 14-Alanine-FOXE1 displayed altered subcellular localization and significantly impaired synergy with other transcription factors, when compared with the more common 16-Alanine-FOXE1. The CH group with thyroid dysgenesis was largely and significantly enriched with the 14-Alanine-FOXE1 homozygosity. Discussion: We provide new evidence that disentangle the pathophysiological role of FOXE1 polyalanine tract, thereby significantly broadening the perspective on the role of FOXE1 in the complex pathogenesis of CH. FOXE1 should be therefore added to the group of polyalanine disease-associated transcription factors.


Subject(s)
Congenital Hypothyroidism , Humans , Congenital Hypothyroidism/genetics , Peptides/genetics , Transcription Factors/genetics , Forkhead Transcription Factors/genetics
8.
Biochem J ; 433(2): 345-55, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21050179

ABSTRACT

Recently, extracellular RNases of the RNase A superfamily, with the characteristic CKxxNTF sequence signature, have been identified in fish. This has led to the recognition that these RNases are present in the whole vertebrate subphylum. In fact, they comprise the only enzyme family unique to vertebrates. Four RNases from zebrafish (Danio rerio) have been previously reported and have a very low RNase activity; some of these are endowed, like human angiogenin, with powerful angiogenic and bactericidal activities. In the present paper, we report the three-dimensional structure, the thermodynamic behaviour and the biological properties of a novel zebrafish RNase, ZF-RNase-5. The investigation of its structural and functional properties, extended to all other subfamily members, provides an inclusive description of the whole zebrafish RNase subfamily.


Subject(s)
Ribonuclease, Pancreatic/chemistry , Ribonucleases/chemistry , Zebrafish/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Ribonuclease, Pancreatic/genetics , Ribonuclease, Pancreatic/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , Sequence Alignment , Zebrafish/embryology , Zebrafish/genetics
9.
Eur Thyroid J ; 11(3)2022 06 21.
Article in English | MEDLINE | ID: mdl-35544053

ABSTRACT

Thyroid hormones are essential for the metabolism of vertebrates and their synthesis, storage and release in the thyroid gland are orchestrated by their large protein precursor thyroglobulin (Tg). Alterations of Tg structure and localisation often correlate with major thyroid disorders. Namely, Tg is the main antigen in autoimmune thyroid diseases, and mutations in its gene are one of the causes of congenital hypothyroidism. Post-translational modifications (PTMs) are crucial for Tg surface properties and may be affected by the disease microenvironment; yet, their role in thyroid homeostasis and pathogenesis remains elusive. The advance of electron cryo-microscopy (cryo-EM) has recently enabled the structure of Tg to be revealed in the un-iodinated and iodinated states. Moreover, ad hoc proteomic analyses have lately identified new PTMs in Tg. Here, we provide an overview of the Tg cryo-EM models obtained so far, and we build a three-dimensional map of known PTMs in Tg. Based on their location, we suggest the potential implication of each PTM in hormonogenesis, interactions with cellular partners, colloid cross-linking and hormone release. In addition, several PTMs overlap with immunogenic regions and pathogenic gene mutations. Hence, our analysis reveals a possible cross-talk between PTMs and alteration of Tg function in these disorders. In perspective, multi-omics analyses from patients, interpreted with structural and functional data, may generate more robust models to correlate phenotypes with classes of Tg functional alterations. This integrative approach will likely provide more targeted strategies to restore specific Tg functions in different thyroid pathologies.

10.
FEBS Lett ; 595(21): 2691-2700, 2021 11.
Article in English | MEDLINE | ID: mdl-34591981

ABSTRACT

In bacteria, Lon is a large hexameric ATP-dependent protease that targets misfolded and also folded substrates, some of which are involved in cell division and survival of cellular stress. The N-terminal domain of Lon facilitates substrate recognition, but how the domains confer such activity has remained unclear. Here, we report the full-length structure of Lon protease from Thermus thermophilus at 3.9 Å resolution in a substrate-engaged state. The six N-terminal domains are arranged in three pairs, stabilized by coiled-coil segments and forming an additional channel for substrate sensing and entry into the AAA+ ring. Sequence conservation analysis and proteolysis assays confirm that this architecture is required for the degradation of both folded and unfolded substrates in bacteria.


Subject(s)
Cryoelectron Microscopy , Protease La , Thermus thermophilus , Proteolysis
11.
Mol Cell Endocrinol ; 531: 111309, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33964321

ABSTRACT

The thyroid gland accumulates the rare dietary element iodine and incorporates it into iodinated thyroid hormones, utilising several tightly regulated reactions and molecular mechanisms. Thyroid hormones are essential in vertebrates and play a central role in many biological processes, such as development, thermogenesis and growth. The control of these functions is exerted through the binding of hormones to nuclear thyroid hormone receptors that rule the transcription of numerous metabolic genes. Over the last 50 years, thyroid biology has been studied extensively at the cellular and organismal levels, revealing its multiple clinical implications, yet, a complete molecular understanding is still lacking. This includes the atomic structures of crucial pathway components that would be needed to elucidate molecular mechanisms. Here we review the currently known protein structures involved in thyroid hormone synthesis, regulation, transport, and actions. We also highlight targets for future investigations that will significantly benefit from recent advances in macromolecular structure determination by electron cryo-microscopy (cryo-EM). As an example, we demonstrate how cryo-EM was crucial to obtain the structure of the large thyroid hormone precursor protein, thyroglobulin. We discuss modern cryo-EM compared to other structure determination methods and how an integrated structural and cell biological approach will help filling the molecular knowledge gap in our understanding of thyroid hormone metabolism. Together with clinical, cellular and high-throughput 'omics' studies, atomic structures of thyroid components will provide an important framework to map disease mutations and to interpret and predict thyroid phenotypes.


Subject(s)
Cryoelectron Microscopy/methods , Thyroglobulin/metabolism , Thyroid Gland/diagnostic imaging , Crystallography, X-Ray , Humans , Protein Conformation , Thyroglobulin/chemistry
12.
Sci Rep ; 6: 30909, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27485862

ABSTRACT

Recent technical advances have revolutionized the field of cryo-electron microscopy (cryo-EM). However, most monomeric proteins remain too small (<100 kDa) for cryo-EM analysis. To overcome this limitation, we explored a strategy whereby a monomeric target protein is genetically fused to a homo-oligomeric scaffold protein and the junction optimized to allow the target to adopt the scaffold symmetry, thereby generating a chimeric particle suitable for cryo-EM. To demonstrate the concept, we fused maltose-binding protein (MBP), a 40 kDa monomer, to glutamine synthetase, a dodecamer formed by two hexameric rings. Chimeric constructs with different junction lengths were screened by biophysical analysis and negative-stain EM. The optimal construct yielded a cryo-EM reconstruction that revealed the MBP structure at sub-nanometre resolution. These findings illustrate the feasibility of using homo-oligomeric scaffolds to enable cryo-EM analysis of monomeric proteins, paving the way for applying this strategy to challenging structures resistant to crystallographic and NMR analysis.


Subject(s)
Cryoelectron Microscopy/methods , Glutamate-Ammonia Ligase/chemistry , Maltose-Binding Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL