Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Genet Metab ; 140(3): 107706, 2023 11.
Article in English | MEDLINE | ID: mdl-37837865

ABSTRACT

BACKGROUND: Phenylalanine (Phe)-restricted diet is associated with lower quality of life for patients with phenylketonuria (PKU), and a concern for caregivers of recently-diagnosed infants. Sapropterin is an oral drug used as an alternative or adjunct to dietary treatment. We have observed that some of the young infants initially managed successfully with sapropterin monotherapy have required dietary treatment in long-term follow-up. We aimed to determine the baseline factors associated with future initiation of dietary treatment in these patients. METHODS: Data were obtained retrospectively from the medical records of 80 PKU patients started on sapropterin monotherapy before 3 months of age between 2011 and 2021. RESULTS: The patients were followed for a median of 3.9 years (Q1-Q3: 2.5-5.75 years). Sapropterin was tapered down and discontinued in 5 patients (6.3%) as their Phe levels remained below 360 µmol/L without treatment. Sapropterin monotherapy was sufficient in 62 patients (77.5%), while 13 (16.2%) required dietary treatment. Phe and tyrosine (Tyr) levels, and Phe:Tyr ratios differed significantly among the patients maintained on sapropterin monotherapy and those started on dietary treatment, but the Phe:Tyr ratio at diagnosis was the most important independent baseline variable (OR: 1.61, 95% CI: 1.15-2.27, p = 0.006), with Phe:Tyr ratio at diagnosis >5.25 associated with dietary treatment (sensitivity: 90.0%, specificity: 81.8%). Genotypic phenotype value (GPV), unavailable at baseline, was also associated with dietary treatment (median GPV 9.2 vs. 3.8, p = 0.006), but some genotypes were not specific to the final treatment modality. DISCUSSION: We propose that the Phe:Tyr ratio at diagnosis is an important indicator to predict dietary requirement in young infants initially managed with sapropterin monotherapy.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Humans , Infant , Retrospective Studies , Quality of Life , Phenylalanine , Phenylketonurias/drug therapy , Phenylketonurias/genetics , Diet , Biopterins , Phenylalanine Hydroxylase/genetics
2.
Am J Med Genet A ; 182(7): 1608-1614, 2020 07.
Article in English | MEDLINE | ID: mdl-32259399

ABSTRACT

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS) deficiency is a very rare autosomal recessive inborn error of ketone body synthesis and presents with hypoketotic hypoglycemia, metabolic acidosis, lethargy, encephalopathy, and hepatomegaly with fatty liver precipitated by catabolic stress. We report acute presentation of two patients from unrelated two families with novel homozygous c.862C>T and c.725-2A>C mutations, respectively, in HMGCS2 gene. Affected patients had severe hypoketotic hypoglycemia, lethargy, encephalopathy, severe metabolic and lactic acidosis and hepatomegaly after infections. Surprisingly, molecular screening of the second family showed more affected patients without clinical findings. These cases expand the clinic spectrum of this extremely rare disease.


Subject(s)
Hydroxymethylglutaryl-CoA Synthase/deficiency , Hypoglycemia/etiology , Metabolism, Inborn Errors/etiology , Mitochondrial Diseases/etiology , Mutation , Acidosis/genetics , Adolescent , Child, Preschool , Female , Hepatomegaly/genetics , Humans , Hydroxymethylglutaryl-CoA Synthase/genetics , Hypoglycemia/genetics , Infant , Lethargy/etiology , Male , Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/genetics , Turkey
3.
Am J Med Genet A ; 182(4): 705-712, 2020 04.
Article in English | MEDLINE | ID: mdl-31981409

ABSTRACT

Phosphomannomutase 2 deficiency (PMM2-CDG) is an autosomal recessive congenital disorder of glycosylation, characterized by multisystem phenotypes, mostly including neurological involvement. In Turkey, due to high rates of consanguinity, many patients with autosomal recessive disorders have homozygous variants and these diseases are more common, compared to Europe. However, published reports of PMM2-CDG from Turkey are scarce. Here, we describe clinical and molecular characteristics of PMM2-CDG patients diagnosed in three centers in Turkey, using data obtained retrospectively from hospital records. We also analyzed an in-house exome database of 1,313 individuals for PMM2 variants and estimated allele, carrier and disease frequencies, using the Hardy-Weinberg law. Eleven patients were identified from 10 families, displaying similar characteristics to previous publications, with the exception of the first report of epilepsia partialis continua and increased prevalence of sensorineural hearing loss. p.Val231Met was the most common variant, and was homozygous in four patients. This novel genotype results in a neurological phenotype with subclinical visceral involvement. Exome database analysis showed an estimated prevalence of 1:286,726 for PMM2-CDG, which is much lower than expected (1:20,000 in Europe) because of the lack of predominance of the common European p.Asp141His allele, associated with a severe phenotype (allele frequency of 1:2,622 compared to 1:252 in gnomAD). These data suggest that prevalence, phenotypes and genotypes of PMM2-CDG in Turkey differ significantly from those in Europe: Milder phenotypes may be more common, but the disease itself rarer, requiring a higher clinical suspicion for diagnosis. The association of sensorineural hearing loss with PMM2-CDG warrants further study.


Subject(s)
Congenital Disorders of Glycosylation/epidemiology , Congenital Disorders of Glycosylation/pathology , Mutation , Phosphotransferases (Phosphomutases)/deficiency , Child , Child, Preschool , Congenital Disorders of Glycosylation/genetics , Female , Genotype , Glycosylation , Humans , Infant , Male , Phenotype , Phosphotransferases (Phosphomutases)/genetics , Prevalence , Retrospective Studies , Turkey/epidemiology
4.
Eur J Pediatr ; 179(7): 1107-1114, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32048023

ABSTRACT

Acute metabolic decompensation (AMD) of maple syrup urine disease (MSUD) must be promptly recognized and treated. In this study, we aimed to identify simple variables associated with AMD in children with MSUD for use in emergency settings. Data were collected retrospectively from 115 emergency visits of 29 children with MSUD over a 4-year period in a major referral hospital. Variables in visits with and without AMD were compared using t test, Mann-Whitney U test, and chi-square test. Logistic regression was used to identify independent variables associated with decompensations. Cut-off values of laboratory variables were determined with receiver operating characteristic curves and correlations with Spearman's rank correlation. Most important variables independently associated with AMD were poor feeding, malaise, anion gap, and especially uric acid, which correlated with leucine levels. Vomiting, dehydration, neurological signs, ketonuria, and ketoaciduria were also associated with AMD. Although sodium, chloride, and glucose were lower in AMD, they had little diagnostic value.Conclusion: In children with MSUD, uric acid and anion gap are key markers for AMD. Poor feeding and malaise are clues before the onset of neurological symptoms. These simple parameters can help determine the presence of AMD in emergency settings.What is Known:• In maple syrup urine disease, acute metabolic decompensations are characterized by gastrointestinal and neurological findings.• Diagnosis requires detection of significantly elevated leucine, which may take a long time or not be available.What is New:• Poor feeding, malaise, hyperuricemia, and high anion gap are parameters that can help diagnose acute decompensations in children with maple syrup urine disease at emergency departments.• Uric acid may be a biomarker for acute decompensations because of its high sensitivity, specificity, and its strong correlation with leucine.


Subject(s)
Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/physiopathology , Acid-Base Equilibrium , Acute Disease , Adolescent , Biomarkers/metabolism , Child , Child, Preschool , Disease Progression , Emergencies , Emergency Service, Hospital , Female , Humans , Infant , Logistic Models , Male , Maple Syrup Urine Disease/metabolism , Medical History Taking , Physical Examination , ROC Curve , Retrospective Studies , Uric Acid/metabolism
5.
Am J Hum Genet ; 98(6): 1130-1145, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27259049

ABSTRACT

Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.


Subject(s)
Frameshift Mutation/genetics , Mitochondrial Diseases/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Nucleotidyltransferases/genetics , Riboflavin/pharmacology , Vitamin B Complex/pharmacology , Adult , Blotting, Western , Case-Control Studies , Cells, Cultured , Electron Transport , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Flavin-Adenine Dinucleotide/metabolism , Gene Expression Profiling , Humans , Infant , Infant, Newborn , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/pathology , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutagenesis, Site-Directed , Protein Binding , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Skin/drug effects , Skin/metabolism , Skin/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Young Adult
6.
Mol Genet Metab ; 127(1): 1-11, 2019 05.
Article in English | MEDLINE | ID: mdl-31103398

ABSTRACT

Phenylketonuria (PKU) is an inherited metabolic disease caused by phenylalanine hydroxylase (PAH) deficiency. As the resulting high blood phenylalanine (Phe) concentration can have detrimental effects on brain development and function, international guidelines recommend lifelong control of blood Phe concentration with dietary and/or medical therapy. Sapropterin dihydrochloride is a synthetic preparation of tetrahydrobiopterin (6R-BH4), the naturally occurring cofactor of PAH. It acts as a pharmacological chaperone, reducing blood Phe concentration and increasing dietary Phe tolerance in BH4-responsive patients with PAH deficiency. Protocols to establish responsiveness to sapropterin dihydrochloride vary widely. Two meetings were held with an international panel of clinical experts in PKU management to develop recommendations for sapropterin dihydrochloride response testing. At the first meeting, regional differences and similarities in testing practices were discussed based on guidelines, a literature review, outcomes of a global physician survey, and case reports. Statements developed based on the discussions were sent to all participants for consensus (>70% of participants) evaluation using a 7-level rating system, and further discussed during the second meeting. The experts recommend sapropterin dihydrochloride response testing in patients with untreated blood Phe concentrations of 360-2000 µmol/L, except in those with two null mutations. For neonates, a 24-h sapropterin dihydrochloride loading test is recommended; responsiveness is defined as a decrease in blood Phe ≥30%. For older infants, children, adolescents, and adults, a test duration of ≥48 h or a 4-week trial is recommended. The main endpoint for a 48-h to 7-day trial is a decrease in blood Phe, while improved Phe tolerance is the endpoint to be assessed during a longer trial. Longer trials may not be feasible in some locations due to lack of reimbursement for hospitalization, while a 4-week trial may not be possible due to limited access to sapropterin dihydrochloride or public health regulation. A 48-h response test should be considered in pregnant patients who cannot achieve blood Phe ≤360 µmol/L with a Phe-restricted diet. Durability of response and clinical benefits of sapropterin dihydrochloride should be assessed over the long term. Harmonization of protocols is expected to improve identification of responders and comparability of test results worldwide.


Subject(s)
Biopterins/analogs & derivatives , Diet , Phenylketonurias/diet therapy , Phenylketonurias/drug therapy , Practice Guidelines as Topic , Biopterins/therapeutic use , Consensus , Female , Humans , Internationality , Phenylketonurias/diagnosis , Physicians , Pregnancy
7.
Am J Med Genet A ; 173(11): 2954-2967, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28884960

ABSTRACT

Mucopolysaccharidosis type VI (MPS VI) is a lysosomal storage disorder (LSD) characterized by a chronic, progressive course with multiorgan involvement. In our study, clinical, biochemical, molecular findings, and response to enzyme replacement therapy (ERT) for at least 6 months were evaluated in 20 patients with MPS VI. Treatment effects on clinical findings such as liver and spleen sizes, cardiac and respiratory parameters, visual and auditory changes, joints' range of motions, endurance tests and changes in urinary glycosaminoglycan excretions, before and after ERT were analyzed. ERT caused increased physical endurance and decreased urinary dermatan sulfate/chondroitin sulfate ratios. Changes in growth parameters, cardiac, respiratory, visual, auditory findings, and joint mobility were not significant. All patients and parents reported out an increased quality of life, which were not correlated with clinical results. The most prevalent mutation was p.L321P, accounting for 58.8% of the mutant alleles and two novel mutations (p.G79E and p.E390 K) were found. ERT was a safe but expensive treatment for MPS VI, with mild benefits in severely affected patients. Early treatment with ERT is mandatory before many organs and systems are involved.


Subject(s)
Lysosomal Storage Diseases/genetics , Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Adolescent , Adult , Child , Child, Preschool , Enzyme Replacement Therapy , Female , Gene Frequency , Genetic Association Studies , Humans , Infant , Infant, Newborn , Lysosomal Storage Diseases/enzymology , Lysosomal Storage Diseases/pathology , Lysosomal Storage Diseases/therapy , Male , Mucopolysaccharidosis VI/enzymology , Mucopolysaccharidosis VI/pathology , Mucopolysaccharidosis VI/therapy , Quality of Life , Turkey/epidemiology , Young Adult
8.
Gynecol Endocrinol ; 33(1): 19-20, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27898272

ABSTRACT

Strict control of hyperphenylalaninemia is necessary in pregnant women with phenylketonuria (PKU) in order to prevent phenylalanine embryopathy in the fetus, characterized by intrauterine growth restriction, dysmorphic facies, congenital heart disease, microcephaly and intellectual disability, collectively known as maternal PKU syndrome. Sapropterin dihydrochloride (SD), an alternative or adjunct to dietary therapy in patients with tetrahydrobiopterin (BH4)-responsive PKU, has recently been used in several cases to treat PKU during pregnancy with satisfactory results. Here, we report two pregnancies treated with SD and unrestricted diet in a patient with BH4-responsive mild PKU. The first pregnancy resulted in a partial hydatidiform mole and was terminated, whereas a healthy infant was born from the second pregnancy. Phenylalanine control was optimal in both pregnancies. To the best of our knowledge, this is the first report on the development of partial hydatidiform mole associated with SD treatment and the second report on molar pregnancy in PKU. While the relation between SD and molar pregnancy is unknown, further studies may be needed to investigate the possible effects of SD on fertilization.


Subject(s)
Biopterins/analogs & derivatives , Hydatidiform Mole/etiology , Phenylketonuria, Maternal/drug therapy , Adult , Biopterins/therapeutic use , Female , Humans , Pregnancy , Pregnancy Outcome
9.
J Inherit Metab Dis ; 39(3): 331-340, 2016 05.
Article in English | MEDLINE | ID: mdl-27038030

ABSTRACT

BACKGROUND: Arginase 1 (ARG1) deficiency is a rare urea cycle disorder (UCD). This hypothesis-generating study explored clinical phenotypes, metabolic profiles, molecular genetics, and treatment approaches in a cohort of children and adults with ARG1 deficiency to add to our understanding of the underlying pathophysiology. METHODS: Clinical data were retrieved retrospectively from physicians using a questionnaire survey. Plasma aminoacids, guanidinoacetate (GAA), parameters indicating oxidative stress and nitric oxide (NO) synthesis as well as asymmetric dimethylarginine (ADMA) were measured at a single study site. RESULTS: Nineteen individuals with ARG1 deficiency and 19 matched controls were included in the study. In patients, paraparesis, cognitive impairment, and seizures were significantly associated suggesting a shared underlying pathophysiology. In patients plasma GAA exceeded normal ranges and plasma ADMA was significantly elevated. Compared to controls, nitrate was significantly higher, and the nitrite:nitrate ratio significantly lower in subjects with ARG1 deficiency suggesting an advantage for NO synthesis by inducible NO synthase (iNOS) over endothelial NOS (eNOS). Logistic regression revealed no significant impact of any of the biochemical parameters (including arginine, nitrates, ADMA, GAA, oxidative stress) or protein restriction on long-term outcome. CONCLUSION: Three main hypotheses which must be evaluated in a hypothesis driven confirmatory study are delineated from this study: 1) clinical manifestations in ARG1 deficiency are not correlated with arginine, protein intake, ADMA, nitrates or oxidative stress. 2) GAA is elevated and may be a marker or an active part of the pathophysiology of ARG1 deficiency. 3) Perturbations of NO metabolism merit future attention in ARG1 deficiency.


Subject(s)
Arginase/genetics , Arginase/metabolism , Urea Cycle Disorders, Inborn/blood , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/metabolism , Adolescent , Adult , Amino Acids/blood , Arginine/analogs & derivatives , Arginine/metabolism , Case-Control Studies , Child , Child, Preschool , Female , Glycine/analogs & derivatives , Glycine/blood , Humans , Infant , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/physiology , Phenotype , Retrospective Studies , Young Adult
10.
Eur J Pediatr ; 175(2): 261-72, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26350228

ABSTRACT

To avoid potentially severe outcomes, phenylketonuria (PKU) must be detected as soon as possible after birth and managed with life-long treatment. A questionnaire-based survey was performed to document diagnosis and management practices for PKU in a region of Southern and Eastern Europe. Prevalence and management data were obtained from 37/59 (63 %) centres within 19/22 (86%) contacted countries (N = 8600 patients). The main results' analysis was based on completed questionnaires obtained from 31 centres (53%) within 15 countries (68%). A median of 10 % of patients per centre had been diagnosed after the newborn period. Metabolic dieticians and specialised adult PKU clinics were lacking in 36 and 84% of centres, respectively. In 26% of centres, treatment initiation was delayed until >15 days of life. Blood phenylalanine (Phe) thresholds to start treatment and upper Phe targets were inconsistent across centres. Ten percent of centres reported monitoring Phe every 2 weeks for pregnant women with PKU, which is insufficient to minimise risk of neonatal sequalae. Sapropterin dihydrochloride treatment was available in 48% of centres, with 24-h responsiveness tests most common (36%). Only one centre among the five countries lacking newborn screening provided a completed questionnaire. CONCLUSION: Targeted efforts by health care professionals and governments are needed to optimise diagnostic and management approaches for PKU in Southern and Eastern Europe. WHAT IS KNOWN: PKU must be detected early and optimally managed throughout life to avoid poor outcomes, yet newborn screening is not universal and diagnostic and management practices for PKU are known to vary widely between different centres and countries. Targeted efforts by health care professionals and governments are needed to optimise diagnostic and management approaches. WHAT IS NEW: PKU management practices are documented in 19 South and Eastern European countries indicating a heterogeneous situation across the region. Key areas for improvement identified in surveyed centres include a need for comprehensive screening in all countries, increased number of metabolic dietitians and specialised adult PKU clinics, delayed time to treatment initiation, appropriate Phe thresholds, Phe targets and monitoring frequencies, and universal access to currently available treatment options.


Subject(s)
Neonatal Screening/methods , Phenylalanine/blood , Phenylketonurias/diagnosis , Adolescent , Adult , Child , Child, Preschool , Disease Management , Europe , Female , Health Personnel , Humans , Infant , Infant, Newborn , Phenylketonurias/epidemiology , Phenylketonurias/therapy , Pregnancy , Surveys and Questionnaires , Young Adult
11.
Eur J Pediatr ; 174(8): 1077-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25754625

ABSTRACT

UNLABELLED: The incidence of biotinidase deficiency in Turkey is currently one of the highest in the world. To expand upon the information about the biotinidase gene (BTD) variations in Turkish patients, we conducted a mutation screening in a large series (n = 210) of probands with biotinidase deficiency, using denaturing high-performance liquid chromatography and direct DNA sequencing. The putative effects of novel mutations were predicted by computational program. Twenty-six mutations, including six novels (p.C143F, p.T244I, c.1212-1222del11, c.1320delG, p.V457L, p.G480R) were identified. Nine of the patients were symptomatic at the initial clinical assessment with presentations of seizures, encephalopathy, and lactic acidemia. The most common mutation in this group of symptomatic patients was c.98-104 del7ins3. Among the screened patients, 72 have partial and 134 have profound biotinidase deficiency (BD) of which 106 are homozygous for BTD mutations. The common mutations (p.R157H, p.D444H, c.98-104del7ins3, p.T532M) cumulatively accounted for 72.3% of all the mutant alleles in the Turkish population. CONCLUSION: The identification of common mutations and hot spot regions of the BTD gene in Turkish patients is important for mutation screening in the Turkish population and helps to ascertain carriers, may have impact on genetic counseling and implementing prevention programs.


Subject(s)
Biotinidase Deficiency/diagnosis , Biotinidase Deficiency/genetics , Biotinidase/genetics , Mutation , Neonatal Screening/methods , Acidosis, Lactic/genetics , Biotinidase Deficiency/physiopathology , Brain Diseases/genetics , Chromatography, High Pressure Liquid , DNA/genetics , Exome , Family , Female , Homozygote , Humans , Incidence , Infant, Newborn , Male , Pedigree , Seizures/genetics , Sequence Analysis, DNA/methods , Turkey/epidemiology
12.
Mol Genet Metab ; 111(1): 16-25, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24268530

ABSTRACT

We collected data on 48 patients from 38 families with guanidinoacetate methyltransferase (GAMT) deficiency. Global developmental delay/intellectual disability (DD/ID) with speech/language delay and behavioral problems as the most affected domains was present in 44 participants, with additional epilepsy present in 35 and movement disorder in 13. Treatment regimens included various combinations/dosages of creatine-monohydrate, l-ornithine, sodium benzoate and protein/arginine restricted diets. The median age at treatment initiation was 25.5 and 39 months in patients with mild and moderate DD/ID, respectively, and 11 years in patients with severe DD/ID. Increase of cerebral creatine and decrease of plasma/CSF guanidinoacetate levels were achieved by supplementation with creatine-monohydrate combined with high dosages of l-ornithine and/or an arginine-restricted diet (250 mg/kg/d l-arginine). Therapy was associated with improvement or stabilization of symptoms in all of the symptomatic cases. The 4 patients treated younger than 9 months had normal or almost normal developmental outcomes. One with inconsistent compliance had a borderline IQ at age 8.6 years. An observational GAMT database will be essential to identify the best treatment to reduce plasma guanidinoacetate levels and improve long-term outcomes.


Subject(s)
Arginine/metabolism , Arginine/therapeutic use , Creatine/metabolism , Creatine/therapeutic use , Glycine/analogs & derivatives , Guanidinoacetate N-Methyltransferase/deficiency , Intellectual Disability/therapy , Language Development Disorders/therapy , Movement Disorders/congenital , Ornithine/therapeutic use , Sodium Benzoate/therapeutic use , Adolescent , Adult , Brain/metabolism , Child , Child, Preschool , Combined Modality Therapy , Female , Glycine/blood , Glycine/cerebrospinal fluid , Guanidinoacetate N-Methyltransferase/metabolism , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Language Development Disorders/diagnosis , Language Development Disorders/metabolism , Male , Middle Aged , Movement Disorders/diagnosis , Movement Disorders/metabolism , Movement Disorders/therapy , Practice Guidelines as Topic , Treatment Outcome , Young Adult
13.
Eur J Paediatr Neurol ; 49: 66-72, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394710

ABSTRACT

OBJECTIVE: To evaluate clinical characteristics and long-term outcomes in patients with guanidinoacetate methyltransferase (GAMT) deficiency with a special emphasis on seizures and electroencephalography (EEG) findings. METHODS: We retrospectively analyzed the clinical and molecular characteristics, seizure types, EEG findings, neuroimaging features, clinical severity scores, and treatment outcomes in six patients diagnosed with GAMT deficiency. RESULTS: Median age at presentation and diagnosis were 11.5 months (8-12 months) and 63 months (18 months -11 years), respectively. Median duration of follow-up was 14 years. Global developmental delay (6/6) and seizures (5/6) were the most common symptoms. Four patients presented with febrile seizures. The age at seizure-onset ranged between 8 months and 4 years. Most common seizure types were generalized tonic seizures (n = 4) and motor seizures resulting in drop attacks (n = 3). Slow background activity (n = 5) and generalized irregular sharp and slow waves (n = 3) were the most common EEG findings. Burst-suppression and electrical status epilepticus during slow-wave sleep (ESES) pattern was present in one patient. Three of six patients had drug-resistant epilepsy. Post-treatment clinical severity scores showed improvement regarding movement disorders and epilepsy. All patients were seizure-free in the follow-up. CONCLUSIONS: Epilepsy is one of the main symptoms in GAMT deficiency with various seizure types and non-specific EEG findings. Early diagnosis and initiation of treatment are crucial for better seizure and cognitive outcomes. This long-term follow up study highlights to include cerebral creatine deficiency syndromes in the differential diagnosis of patients with global developmental delay and epilepsy and describes the course under treatment.


Subject(s)
Electroencephalography , Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders , Movement Disorders/congenital , Humans , Male , Female , Child, Preschool , Infant , Child , Retrospective Studies , Seizures/diagnosis , Seizures/physiopathology , Seizures/etiology , Seizures/drug therapy , Movement Disorders/diagnosis , Follow-Up Studies , Developmental Disabilities/etiology
14.
Nutrients ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999811

ABSTRACT

BACKGROUND: In 2011, a European phenylketonuria (PKU) survey reported that the blood phenylalanine (Phe) levels were well controlled in early life but deteriorated with age. Other studies have shown similar results across the globe. Different target blood Phe levels have been used throughout the years, and, in 2017, the European PKU guidelines defined new targets for blood Phe levels. This study aimed to evaluate blood Phe control in patients with PKU across Europe. METHODS: nine centres managing PKU in Europe and Turkey participated. Data were collected retrospectively from medical and dietetic records between 2012 and 2018 on blood Phe levels, PKU severity, and medications. RESULTS: A total of 1323 patients (age range:1-57, 51% male) participated. Patient numbers ranged from 59 to 320 in each centre. The most common phenotype was classical PKU (n = 625, 48%), followed by mild PKU (n = 357, 27%) and hyperphenylalaninemia (HPA) (n = 325, 25%). The mean percentage of blood Phe levels within the target range ranged from 65 ± 54% to 88 ± 49% for all centres. The percentage of Phe levels within the target range declined with increasing age (<2 years: 89%; 2-5 years: 84%; 6-12 years: 73%; 13-18 years: 85%; 19-30 years: 64%; 31-40 years: 59%; and ≥41 years: 40%). The mean blood Phe levels were significantly lower and the percentage within the target range was significantly higher (p < 0.001) in patients with HPA (290 ± 325 µmol/L; 96 ± 24%) and mild PKU (365 ± 224 µmol/L; 77 ± 36%) compared to classical PKU (458 ± 350 µmol/L, 54 ± 46%). There was no difference between males and females in the mean blood Phe levels (p = 0.939), but the percentage of Phe levels within the target range was higher in females among school-age children (6-12 years; 83% in females vs. 78% in males; p = 0.005), adolescents (13-18 years; 62% in females vs. 59% in males; p = 0.034) and adults (31-40 years; 65% in females vs. 41% in males; p < 0.001 and >41 years; 43% in females vs. 28% in males; p < 0.001). Patients treated with sapropterin (n = 222) had statistically significantly lower Phe levels compared to diet-only-treated patients (mean 391 ± 334 µmol/L; percentage within target 84 ± 39% vs. 406 ± 334 µmol/L; 73 ± 41%; p < 0.001), although a blood Phe mean difference of 15 µmol/L may not be clinically relevant. An increased frequency of blood Phe monitoring was associated with better metabolic control (p < 0.05). The mean blood Phe (% Phe levels within target) from blood Phe samples collected weekly was 271 ± 204 µmol/L, (81 ± 33%); for once every 2 weeks, it was 376 ± 262 µmol/L, (78 ± 42%); for once every 4 weeks, it was 426 ± 282 µmol/L, (71 ± 50%); and less than monthly samples, it was 534 ± 468 µmol/L, (70 ± 58%). CONCLUSIONS: Overall, blood Phe control deteriorated with age. A higher frequency of blood sampling was associated with better blood Phe control with less variability. The severity of PKU and the available treatments and resources may impact the blood Phe control achieved by each treatment centre.


Subject(s)
Phenylalanine , Phenylketonurias , Humans , Phenylketonurias/blood , Phenylalanine/blood , Male , Adolescent , Child , Female , Child, Preschool , Europe , Adult , Young Adult , Retrospective Studies , Infant , Middle Aged , Turkey/epidemiology
15.
J Hum Genet ; 58(10): 675-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23924834

ABSTRACT

Classical galactosemia is an inherited recessive disorder of galactose metabolism caused by deficiency of the enzyme galactose-1-phosphate uridyl transferase (GALT), which is caused by mutations in the GALT gene. In this study, 56 Turkish patients diagnosed with galactosemia were screened for GALT gene mutations using Affymetrix resequencing microarrays. Eleven types of mutations were detected in these patients, including two novel mutations (R258G and G310fsX49) and nine recurrent mutations. We detected six patients who were homozygous for the E340* mutation and for N314D, L218L silent substitutions (Duarte-1 variant) in this study. The haplotype E340*, N314D and L218L has been reported only in Turkish patients, which suggests that the E340* mutation is specific for our population and might be spread by a Turk ancestor. In patients, the Duarte-1 allele was found with a frequency of 10.71%, whereas the Duarte-2 allele was not detected. Duarte-1 and Duarte-2 alleles were found to be present at a frequency of 2.3% and 1.4%, respectively, in the screening of 105 healthy individuals. Considering all detected mutations, it is a very important finding that exons 6 and 10 of the GALT gene account for 79% of all mutant alleles in the Turkish population. The most common mutation is Q188R, with a frequency of 55.35%.


Subject(s)
Asian People/genetics , Galactosemias/epidemiology , Galactosemias/genetics , Genetic Variation , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Alleles , Exons , Gene Frequency , Gene Silencing , Homozygote , Humans , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Sequence Analysis, DNA , Turkey
16.
Turk J Pediatr ; 55(2): 152-7, 2013.
Article in English | MEDLINE | ID: mdl-24192674

ABSTRACT

Alpha-fetoprotein (AFP) is used as a tumor marker for hepatocellular carcinoma, hepatoblastoma and germ cell tumors. It may also be elevated in infants with some hepatobiliary disorders. The mechanism of AFP elevation in neonatal cholestasis is not known. We retrospectively evaluated serum AFP levels in 53 infants with neonatal cholestasis. Thirty patients (56.6%) had elevated AFP, and the ratio of patients with elevated AFP was significantly high in both the metabolic diseases and idiopathic neonatal hepatitis groups (p=0.021). Serum aspartate aminotransferase (AST) levels increased significantly in patients with elevated AFP (p=0.004). Steatosis was the distinctive histopathological finding of the patients with high AFP. The patients with steatosis had significantly higher standard deviation (SD) score of AFP than the patients without steatosis (p=0.001). We have shown AFP elevation in neonatal cholestasis due to metabolic disorders and idiopathic neonatal hepatitis and its association with steatosis and AST elevation.


Subject(s)
Cholestasis/blood , alpha-Fetoproteins/analysis , Aspartate Aminotransferases/blood , Cholestasis/etiology , Fatty Liver/blood , Female , Humans , Infant , Infant, Newborn , Male
17.
Mol Genet Metab ; 106(4): 419-23, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22727635

ABSTRACT

Methylmalonic acidemia is an autosomal recessive metabolic disorder affecting the propionate oxidation pathway in the catabolism of several amino acids, odd-chain fatty acids, and cholesterol. Methylmalonic acidemia is characterized by elevated levels of methylmalonic acid in the blood and urine. Mutations in the MUT gene, encoding methylmalonyl-CoA mutase carries out isomerization of L-methylmalonyl-CoA to succinyl-CoA, cause methylmalonic acidemia. In this study, 30 Turkish patients diagnosed with mut methylmalonic acidemia were screened for mutations using custom designed sequencing microarrays. The study resulted in detection of 22 different mutations, 10 of which were novel: p.Q132*, p.A137G, c.753+1T, p.T387I, p.Q514E, p.P615L, p.D625V, c.1962_1963delTC, p.L674F, and c.2115_2116insA. The most common, p.P615T, was identified in 28.0% of patients. These results suggest that microarray based sequencing is a useful tool for the detection of mutations in MUT in patients with mut methylmalonic acidemia.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , DNA Mutational Analysis/methods , Genetic Predisposition to Disease , Mutation/genetics , Oligonucleotide Array Sequence Analysis/methods , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Sequence , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Methylmalonyl-CoA Mutase/chemistry , Methylmalonyl-CoA Mutase/genetics , Molecular Sequence Data , Polymorphism, Genetic , Sequence Alignment
18.
Pediatr Nephrol ; 27(1): 115-21, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21786142

ABSTRACT

We report the molecular findings for the CTNS gene in 12 Turkish cystinosis patients aged 7-29 years. All presented initially with severe failure to thrive, polyuria, and polydipsia. Cystinosis was diagnosed at age 1 month to 9 years. Seven patients reached end-stage renal failure at ages ranging from 6.5 to 15 years. Whereas three of the remaining five have renal Fanconi syndrome with proteinuria, two have had kidney failure of varying degrees. Molecular analyses involved an initial multiplex polymerase chain reaction (PCR) to determine the presence or absence of the 57-kb northern European founder deletion in CTNS, followed by sequencing of the ten coding exons of CTNS. Comprehensive mutation analysis verified that none of the 12 patients carried the common 57-kb deletion. We identified four previously reported nucleotide variations associated with cystinosis and five new variants: a 10-kb deletion, three missense variants, and a nucleotide substitution in a potential branch point site of intron 4. This study is the first molecular analysis of Turkish cystinosis patients and provides guidance for the molecular diagnosis of cystinosis in this population.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Cystinosis/genetics , Mutation , Adolescent , Adult , Child , Cystinosis/complications , Cystinosis/epidemiology , DNA Mutational Analysis , Disease Progression , Exons , Failure to Thrive/genetics , Fanconi Syndrome/genetics , Female , Genetic Predisposition to Disease , Humans , Introns , Kidney Failure, Chronic/genetics , Male , Mutation, Missense , Phenotype , Point Mutation , Polydipsia/genetics , Polymerase Chain Reaction , Polyuria/genetics , Proteinuria/genetics , Renal Insufficiency/genetics , Sequence Deletion , Turkey/epidemiology , Young Adult
19.
Turk J Pediatr ; 54(1): 52-8, 2012.
Article in English | MEDLINE | ID: mdl-22397043

ABSTRACT

Neurometabolic diseases diagnosed by cerebrospinal fluid (CSF) examination are GLUT1 deficiency, serine-deficiency syndromes, glycine encephalopathy, cerebral folate deficiency, neonatal vitamin-responsive epileptic encephalopathies, disorders of monoamine metabolism, and y-amino butyric acid (GABA) metabolism. We retrospectively analyzed and compared the demographic, clinical, laboratory, and neuroimaging features of 62 patients in whom CSF examination was performed. Of the 62 patients, 16 (25.8%) had a final diagnosis, including succinic semialdehyde dehydrogenase (SSADH) deficiency (n=4), aromatic amino acid decarboxylase (AADC) deficiency (n=4), L-dopa-responsive dystonia (n=3), glycine encephalopathy (n=2), pyridoxal-phosphate-dependent seizures (n=l), cerebral folate deficiency (n=1), and serine biosynthesi defect (n=1). Parental consanguinity was present in all patients except one Positive yield of a diagnostic lumbar puncture (LP) for the diagnosis of inherited neurotransmitter metabolism disorder was 25.8% overall. Oculogyric crisis (50%), diurnal variation (81.8%) and consanguinity (93.8%) were the only statistically significant variables between patients with and without a specific diagnosis. It is challenging to diagnose neurotransmitter defects, since there is no ideal set of clinical symptoms. In our cohort, consanguinity, diurnal variation and abnormal ocular movements were the most significant findings associated with a diagnosis of a specific neurometabolic disorder based on CSF examination. Early diagnosis is of great importance not only for specific treatment, but also for genetic counseling and prenatal diagnosis.


Subject(s)
Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid , Spinal Puncture , Adolescent , Chi-Square Distribution , Child , Child, Preschool , Circadian Rhythm , Consanguinity , Electroencephalography , Female , Humans , Infant , Male , Neuroimaging , Retrospective Studies , Statistics, Nonparametric
20.
Turk J Pediatr ; 54(4): 409-12, 2012.
Article in English | MEDLINE | ID: mdl-23692723

ABSTRACT

In many countries, neonatal screening programs have been unable to expand and have been limited to a few diseases. We highlight herein the opportunity available for the early detection of some inborn errors of metabolism (IEMs) in those countries in which newborn screening programs are limited. All the newborns that are referred to us for hyperphenylalaninemia are examined physically and their blood samples are checked by both high-performance liquid chromatography (HPLC) for blood phenylalanine levels and by amino acid analyzer for the measurement of blood amino acid concentrations. Seven patients who had been referred to our unit for hyperphenylalaninemia were eventually diagnosed with another IEM. A careful physical examination of the babies sent for positive screening test result combined with the utilization of low expense screening techniques at the experienced referring centers might facilitate otherwise missed opportunities for the early detection of some IEMs.


Subject(s)
Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Neonatal Screening/methods , Phenylketonurias/diagnosis , Female , Humans , Infant, Newborn , Male , Turkey/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL