Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Mol Psychiatry ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38514804

ABSTRACT

Bridging Integrator 1 (BIN1) is the second most important Alzheimer's disease (AD) risk gene, but its physiological roles in neurons and its contribution to brain pathology remain largely elusive. In this work, we show that BIN1 plays a critical role in the regulation of calcium homeostasis, electrical activity, and gene expression of glutamatergic neurons. Using single-cell RNA-sequencing on cerebral organoids generated from isogenic BIN1 wild type (WT), heterozygous (HET) and homozygous knockout (KO) human-induced pluripotent stem cells (hiPSCs), we show that BIN1 is mainly expressed by oligodendrocytes and glutamatergic neurons, like in the human brain. Both BIN1 HET and KO cerebral organoids show specific transcriptional alterations, mainly associated with ion transport and synapses in glutamatergic neurons. We then demonstrate that BIN1 cell-autonomously regulates gene expression in glutamatergic neurons by using a novel protocol to generate pure culture of hiPSC-derived induced neurons (hiNs). Using this system, we also show that BIN1 plays a key role in the regulation of neuronal calcium transients and electrical activity via its interaction with the L-type voltage-gated calcium channel Cav1.2. BIN1 KO hiNs show reduced activity-dependent internalization and higher Cav1.2 expression compared to WT hiNs. Pharmacological blocking of this channel with clinically relevant doses of nifedipine, a calcium channel blocker, partly rescues electrical and gene expression alterations in BIN1 KO glutamatergic neurons. Further, we show that transcriptional alterations in BIN1 KO hiNs that affect biological processes related to calcium homeostasis are also present in glutamatergic neurons of the human brain at late stages of AD pathology. Together, these findings suggest that BIN1-dependent alterations in neuronal properties could contribute to AD pathophysiology and that treatment with low doses of clinically approved calcium blockers should be considered as an option to slow disease-onset and progression.

2.
J Neurosci ; 41(33): 6969-6986, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34266896

ABSTRACT

Radial glial progenitor cells (RGCs) in the dorsal telencephalon directly or indirectly produce excitatory projection neurons and macroglia of the neocortex. Recent evidence shows that the pool of RGCs is more heterogeneous than originally thought and that progenitor subpopulations can generate particular neuronal cell types. Using single-cell RNA sequencing, we have studied gene expression patterns of RGCs with different neurogenic behavior at early stages of cortical development. At this early age, some RGCs rapidly produce postmitotic neurons, whereas others self-renew and undergo neurogenic divisions at a later age. We have identified candidate genes that are differentially expressed among these early RGC subpopulations, including the transcription factor Sox9. Using in utero electroporation in embryonic mice of either sex, we demonstrate that elevated Sox9 expression in progenitors affects RGC cell cycle duration and leads to the generation of upper layer cortical neurons. Our data thus reveal molecular differences between progenitor cells with different neurogenic behavior at early stages of corticogenesis and indicates that Sox9 is critical for the maintenance of RGCs to regulate the generation of upper layer neurons.SIGNIFICANCE STATEMENT The existence of heterogeneity in the pool of RGCs and its relationship with the generation of cellular diversity in the cerebral cortex has been an interesting topic of debate for many years. Here we describe the existence of RGCs with reduced neurogenic behavior at early embryonic ages presenting a particular molecular signature. This molecular signature consists of differential expression of some genes including the transcription factor Sox9, which has been found to be a specific regulator of this subpopulation of progenitor cells. Functional experiments perturbing expression levels of Sox9 reveal its instructive role in the regulation of the neurogenic behavior of RGCs and its relationship with the generation of upper layer projection neurons at later ages.


Subject(s)
Cell Self Renewal/genetics , Ependymoglial Cells/cytology , Gene Expression Regulation, Developmental/genetics , Neocortex/cytology , Nerve Tissue Proteins/physiology , Neurogenesis/genetics , SOX9 Transcription Factor/physiology , Animals , Cell Cycle/genetics , Electroporation , Ependymoglial Cells/metabolism , Female , Genes, Reporter , Genetic Vectors/administration & dosage , Injections, Intraventricular , Mice , Mice, Inbred C57BL , Neocortex/embryology , Neocortex/growth & development , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuroglia/cytology , Neurons/cytology , Pregnancy , Promoter Regions, Genetic/genetics , SOX9 Transcription Factor/biosynthesis , SOX9 Transcription Factor/genetics , Single-Cell Analysis , Transcription, Genetic
3.
Epilepsy Behav ; 121(Pt B): 106575, 2021 08.
Article in English | MEDLINE | ID: mdl-31704249

ABSTRACT

In rodents, status epilepticus (SE) triggered by chemoconvulsants can differently affect the proliferation and fate of adult-born dentate granule cells (DGCs). It is unknown whether abnormal neurogenesis results from intracellular signaling associated with drug-receptor interaction, paroxysmal activity, or both. To test the contribution of these factors, we systematically compared the effects of kainic acid (KA)- and pilocarpine (PL)-induced SE on the morphology and localization of DGCs generated before or after SE in the ipsi- and contralateral hippocampi of mice. Hippocampal insult was induced by unilateral intrahippocampal (ihpc) administration of KA or PL. We employed conditional doublecortin-dependent expression of the green fluorescent protein (GFP) to label adult-born cells committed to neuronal lineage either one month before (mature DGCs) or seven days after (immature DGCs) SE. Unilateral ihpc administration of KA and PL led to bilateral epileptiform discharges and focal and generalized behavioral seizures. However, drastic granule cell layer (GCL) dispersion occurred only in the ipsilateral side of KA injection, but not in PL-treated animals. Granule cell layer dispersion was accompanied by a significant reduction in neurogenesis after SE in the ipsilateral side of KA-treated animals, while neurogenesis increased in the contralateral side of KA-treated animals and both hippocampi of PL-treated animals. The ratio of ectopic neurons in the ipsilateral hippocampus was higher among immature as compared to mature neurons in the KA model (32.8% vs. 10.0%, respectively), while the occurrence of ectopic neurons in PL-treated animals was lower than 3% among both mature and immature DGCs. Collectively, our results suggest that KA- and PL-induced SE leads to distinct cellular alterations in mature and immature DGCs. We also show different local and secondary effects of KA or PL in the histological organization of the adult DG, suggesting that these unique epilepsy models may be complementary to our understanding of the disease. NEWroscience 2018.


Subject(s)
Dentate Gyrus , Status Epilepticus , Animals , Disease Models, Animal , Hippocampus , Mice , Neurogenesis , Pilocarpine/toxicity , Status Epilepticus/chemically induced
4.
J Cell Mol Med ; 24(17): 9574-9589, 2020 09.
Article in English | MEDLINE | ID: mdl-32691511

ABSTRACT

The tumour mass is composed not only of heterogeneous neoplastic cells, but also a variety of other components that may affect cancer cells behaviour. The lack of detailed knowledge about all the constituents of the tumour microenvironment restricts the design of effective treatments. Nerves have been reported to contribute to the growth and maintenance of numerous tissues. The effects of sensory innervations on tumour growth remain unclear. Here, by using state-of-the-art techniques, including Cre/loxP technologies, confocal microscopy, in vivo-tracing and chemical denervation, we revealed the presence of sensory nerves infiltrating within the melanoma microenvironment, and affecting cancer progression. Strikingly, melanoma growth in vivo was accelerated following genetic ablation or chemical denervation of sensory nerves. In humans, a retrospective analysis of melanoma patients revealed that increased expression of genes related to sensory nerves in tumours was associated with better clinical outcomes. These findings suggest that sensory innervations counteract melanoma progression. The emerging knowledge from this research provides a novel target in the tumour microenvironment for therapeutic benefit in cancer patients.


Subject(s)
Melanoma/pathology , Sensory Receptor Cells/pathology , Skin Neoplasms/pathology , Animals , Cell Communication/physiology , Cell Line, Tumor , Disease Progression , Humans , Mice , Mice, Inbred C57BL , Retrospective Studies , Tumor Microenvironment
5.
Cereb Cortex ; 28(2): 538-548, 2018 02 01.
Article in English | MEDLINE | ID: mdl-27999124

ABSTRACT

Neuronal survival and morphological maturation depends on the action of the transcription factor calcium responsive element binding protein (CREB), which regulates expression of several target genes in an activity-dependent manner. However, it remains largely unknown whether CREB-mediated transcription could play a role at early stages of neuronal differentiation, prior to the establishment of functional synaptic contacts. Here, we show that CREB is phosphorylated at very early stages of neuronal differentiation in vivo and in vitro, even in the absence of depolarizing agents. Using genetic tools, we also show that inhibition of CREB-signaling affects neuronal growth and survival in vitro without affecting cell proliferation and neurogenesis. Expression of A-CREB or M-CREB, 2 dominant-negative inhibitors of CREB, decreases cell survival and the complexity of neuronal arborization. Similar changes are observed in neurons treated with protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors, which also show decreased levels of pCREBSer133. Notably, expression of CREB-FY, a Tyr134Phe CREB mutant with a lower Km for phosphorylation, partly rescues the effects of PKA and CaMKII inhibition. Our data indicate that CREB-mediated signaling play important roles at early stages of cortical neuron differentiation, prior to the establishment of fully functional synaptic contacts.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Neurons/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cerebral Cortex/drug effects , Female , Mice , Mice, Inbred C57BL , Neurons/drug effects , Pregnancy , Protein Kinase Inhibitors/pharmacology
6.
Development ; 140(16): 3303-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23900539

ABSTRACT

During embryonic development, the telencephalon is specified along its axis through morphogenetic gradients, leading to the positional-dependent generation of multiple neuronal types. After embryogenesis, however, the fate of neuronal progenitors becomes more restricted, and they generate only a subset of neurons. Here, we review studies of postnatal and adult neurogenesis, challenging the notion that fixed genetic programs restrict neuronal fate. We hypothesize that the adult brain maintains plastic neural stem cells that are capable of responding to changes in environmental cues and generating diverse neuronal types. Thus, the limited diversity of neurons generated under normal conditions must be actively maintained by the adult milieu.


Subject(s)
GABAergic Neurons/physiology , Neural Stem Cells/physiology , Neurogenesis , Neuronal Plasticity , Animals , Cell Movement , Embryo, Mammalian/metabolism , Embryo, Mammalian/physiology , Embryonic Development , GABAergic Neurons/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Neural Stem Cells/metabolism , Stem Cell Niche , Synaptic Transmission , Telencephalon/metabolism , Telencephalon/physiology
7.
J Infect Dis ; 211(10): 1658-76, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25398459

ABSTRACT

BACKGROUND: Leprosy morbidity is increased by 2 pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL). METHODS: To discover host factors related to immune reactions, global transcriptional profiles of peripheral blood mononuclear cells were compared between 11 RR, 11 ENL, and 19 matched control patients, with confirmation by quantitative polymerase chain reaction. Encoded proteins were investigated in skin biopsy specimens by means of immunohistochemistry. RESULTS: There were 275 genes differentially expressed in RR and 517 differentially expressed in ENL on the microarray. Pathway analysis showed immunity-related pathways represented in RR and ENL transcriptional profiles, with the "complement and coagulation" pathway common to both. Interferon γ was identified as a significant upstream regulator of the expression changes for RR and ENL. Immunohistochemical staining of skin lesions showed increased C1q in both RR and ENL. CONCLUSIONS: These data suggest a previously underrecognized role for complement in the pathogenesis of both RR and ENL, and we propose new hypotheses for reaction pathogenesis.


Subject(s)
Gene Expression Profiling , Leprosy/genetics , Leprosy/immunology , Adult , Aged , Case-Control Studies , Complement System Proteins/immunology , Female , Humans , Immunohistochemistry , Leprosy/pathology , Leukocytes, Mononuclear/immunology , Male , Microarray Analysis , Middle Aged , Real-Time Polymerase Chain Reaction , Skin/pathology , Young Adult
8.
J Neurosci ; 34(32): 10475-87, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25100583

ABSTRACT

Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as "double cortex," a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.


Subject(s)
Cadherins/deficiency , Cell Proliferation , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Microfilament Proteins/deficiency , Telencephalon/pathology , Age Factors , Animals , Cadherins/genetics , Doublecortin Domain Proteins , Embryo, Mammalian , Gene Expression Regulation, Developmental/genetics , Glial Fibrillary Acidic Protein/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Phosphopyruvate Hydratase/metabolism , Repressor Proteins/metabolism , Stem Cells/physiology , Telencephalon/abnormalities , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism
9.
Development ; 138(6): 1057-68, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21343361

ABSTRACT

Little is known about the intrinsic specification of adult neural stem cells (NSCs) and to what extent they depend on their local niche. To observe adult NSC division and lineage progression independent of their niche, we isolated cells from the adult mouse subependymal zone (SEZ) and cultured them at low density without growth factors. We demonstrate here that SEZ cells in this culture system are primarily neurogenic and that adult NSCs progress through stereotypic lineage trees consisting of asymmetric stem cell divisions, symmetric transit-amplifying divisions and final symmetric neurogenic divisions. Stem cells, identified by their astro/radial glial identity and their slow-dividing nature, were observed to generate asymmetrically and fast-dividing cells that maintained an astro/radial glia identity. These, in turn, gave rise to symmetrically and fast-dividing cells that lost glial hallmarks, but had not yet acquired neuronal features. The number of amplifying divisions was limited to a maximum of five in this system. Moreover, we found that cell growth correlated with the number of subsequent divisions of SEZ cells, with slow-dividing astro/radial glia exhibiting the most substantial growth prior to division. The fact that in the absence both of exogenously supplied growth factors and of signals provided by the local niche neurogenic lineage progression takes place in such stereotypic fashion, suggests that lineage progression is, to a significant degree, cell intrinsic or pre-programmed at the beginning of the lineage.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/physiology , Cell Division/physiology , Cell Lineage/physiology , Cell Tracking/methods , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Adult Stem Cells/drug effects , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Division/drug effects , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Cells, Cultured , Intercellular Signaling Peptides and Proteins/pharmacology , Mice , Nervous System/cytology , Neural Stem Cells/drug effects , Time Factors
10.
NPJ Aging ; 10(1): 19, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499592

ABSTRACT

Neuroinflammation is a key feature of Alzheimer's disease (AD). In this work, analysis of single- cell RNA-sequencing (scRNA-seq) data obtained from the brain of patients with AD provides evidence supporting a switch from an innate to an adaptative immune response during tauopathy progression, with both disease-associated microglia (DAM) and CD8+ T cells becoming more frequent at advanced Braak stages.

11.
Biomedicines ; 11(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37761004

ABSTRACT

Alzheimer's disease (AD) is the most prevalent cause of dementia in the elderly, characterized by the presence of amyloid-beta (Aß) plaques, neurofibrillary tangles, neuroinflammation, synapse loss and neurodegeneration in the brain. The amyloid cascade hypothesis postulates that deposition of Aß peptides is the causative agent of AD pathology, but we still lack comprehensive understanding of the molecular mechanisms connecting Aß peptides to neuronal dysfunctions in AD. In this work, we investigate the early effects of Aß peptide accumulation on the functional properties and gene expression profiles of human-induced neurons (hiNs). We show that hiNs acutely exposed to low concentrations of both cell-secreted Aß peptides or synthetic Aß1-42 exhibit alterations in the frequency of calcium transients suggestive of increased neuronal excitability. Using single-cell RNA sequencing, we also show that cell-secreted Aß up-regulates the expression of several synapse-related genes and down-regulates the expression of genes associated with metabolic stress mainly in glutamatergic neurons and, to a lesser degree, in GABAergic neurons and astrocytes. These neuronal alterations correlate with activation of the SEMA5, EPHA and NECTIN signaling pathways, which are important regulators of synaptic plasticity. Altogether, our findings indicate that slight elevations in Aß concentrations are sufficient to elicit transcriptional changes in human neurons, which can contribute to early alterations in neural network activity.

12.
PLoS One ; 17(4): e0266405, 2022.
Article in English | MEDLINE | ID: mdl-35421130

ABSTRACT

A comprehensive understanding of the pathological mechanisms involved at different stages of neurodegenerative diseases is key for the advance of preventive and disease-modifying treatments. Gene expression alterations in the diseased brain is a potential source of information about biological processes affected by pathology. In this work, we performed a systematic comparison of gene expression alterations in the brains of human patients diagnosed with Alzheimer's disease (AD) or Progressive Supranuclear Palsy (PSP) and animal models of amyloidopathy and tauopathy. Using a systems biology approach to uncover biological processes associated with gene expression alterations, we could pinpoint processes more strongly associated with tauopathy/PSP and amyloidopathy/AD. We show that gene expression alterations related to immune-inflammatory responses preponderate in younger, whereas those associated to synaptic transmission are mainly observed in older AD patients. In PSP, however, changes associated with immune-inflammatory responses and synaptic transmission overlap. These two different patterns observed in AD and PSP brains are fairly recapitulated in animal models of amyloidopathy and tauopathy, respectively. Moreover, in AD, but not PSP or animal models, gene expression alterations related to RNA splicing are highly prevalent, whereas those associated with myelination are enriched both in AD and PSP, but not in animal models. Finally, we identify 12 AD and 4 PSP genetic risk factors in cell-type specific co-expression modules, thus contributing to unveil the possible role of these genes to pathogenesis. Altogether, this work contributes to unravel the potential biological processes affected by amyloid versus tau pathology and how they could contribute to the pathogenesis of AD and PSP.


Subject(s)
Alzheimer Disease , Supranuclear Palsy, Progressive , Tauopathies , Aged , Alzheimer Disease/metabolism , Brain/metabolism , Humans , Supranuclear Palsy, Progressive/metabolism , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism
13.
Acta Neuropathol Commun ; 10(1): 4, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34998435

ABSTRACT

The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer's disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.


Subject(s)
Alzheimer Disease/genetics , Drosophila Proteins/genetics , Endosomes/genetics , Nerve Degeneration/genetics , Neurons/pathology , Transcription Factors/genetics , Alzheimer Disease/pathology , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Drosophila melanogaster , Endosomes/metabolism , Endosomes/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Nerve Degeneration/pathology , Neurons/metabolism
14.
Nat Genet ; 54(4): 412-436, 2022 04.
Article in English | MEDLINE | ID: mdl-35379992

ABSTRACT

Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cognitive Dysfunction/psychology , Genome-Wide Association Study , Humans , tau Proteins/genetics
15.
Cereb Cortex ; 19 Suppl 1: i135-43, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19363148

ABSTRACT

In order to unravel the molecular determinants of cell fate, it is important to understand when fate restriction occurs during brain development. Lineage analysis suggested that bi- or multipotent progenitors persist into late developmental stages in some central nervous system regions, whereas most progenitor cells in the cerebral cortex appeared to be restrained to generate only a single cell type already at early stages. Here we discuss this previous work and present new data demonstrating that cortical progenitors generating exclusively glial cells appear late in development. In utero transduction of cortical progenitors at early and mid-neurogenesis using a combination of replication-defective retroviral vectors encoding different fluorescent proteins indicated that the early developing cortex is devoid of glia-restricted progenitors, although these are frequent during mid- and late neurogenesis. Clonal analyses in vitro using retroviral vectors and live cell tracking by video time-lapse microscopy confirmed these findings, revealing that the early developing cortex harbors 2 main progenitor types: neuron-restricted and bipotent (neuron-glial) progenitors. The latter are responsible for the generation of glial-restricted progenitors at mid- and late neurogenesis.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/embryology , Neurogenesis/physiology , Neuroglia/cytology , Neuroglia/physiology , Stem Cells/cytology , Stem Cells/physiology , Animals , Cell Differentiation , Cerebral Cortex/physiology , Mice
16.
Front Neurosci ; 14: 571315, 2020.
Article in English | MEDLINE | ID: mdl-33071745

ABSTRACT

Cell lineage in the adult hippocampus comprises multipotent and neuron-committed progenitors. In the present work, we fate-mapped neuronal progenitors using Dcx-CreERT2 and CAG-CAT-EGFP double-transgenic mice (cDCX/EGFP). We show that 3 days after tamoxifen-mediated recombination in cDCX/EGFP adult mice, GFP+ cells in the dentate gyrus (DG) co-expresses DCX and about 6% of these cells are proliferative neuronal progenitors. After 30 days, 20% of GFP+ generated from these progenitors differentiate into GFAP+ astrocytes. Unilateral intrahippocampal administration of the chemoconvulsants kainic acid (KA) or pilocarpine (PL) triggered epileptiform discharges and led to a significant increase in the number of GFP+ cells in both ipsi and contralateral DG. However, while PL favored the differentiation of neurons in both ipsi- and contralateral sides, KA stimulated neurogenesis only in the contralateral side. In the ipsilateral side, KA injection led to an unexpected increase of astrogliogenesis in the Dcx-lineage. We also observed a small number of GFP+/GFAP+ cells displaying radial-glia morphology ipsilaterally 3 days after KA administration, suggesting that some Dcx-progenitors could regress to a multipotent stage. The boosted neurogenesis and astrogliogenesis observed in the Dcx-lineage following chemoconvulsants administration correlated, respectively, with preservation or degeneration of the parvalbuminergic plexus in the DG. Increased inflammatory response, by contrast, was observed both in the DG showing increased neurogenesis or astrogliogenesis. Altogether, our data support the view that cell lineage progression in the adult hippocampus is not unidirectional and could be modulated by local network activity and GABA-mediated signaling.

17.
Brain Commun ; 2(2): fcaa139, 2020.
Article in English | MEDLINE | ID: mdl-33718872

ABSTRACT

Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer's disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer's disease, deciphering the impact of Alzheimer's risk genes on synapse formation and maintenance is of great interest. In this article, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid ß peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein. Co-culture with cells overexpressing mutated amyloid precursor protein exposed the synapses of primary hippocampal neurons to amyloid ß1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of amyloid ß suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta-an Alzheimer's disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer's disease brains at gene expression and protein levels-selectively in postsynaptic neurons is protective against amyloid ß1-42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically relevant model of Alzheimer's disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.

18.
Brain Res ; 1705: 66-74, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29510143

ABSTRACT

The adult mammalian brain contains an enormous variety of neuronal types, which are generally categorized in large groups, based on their neurochemical identity, hodological properties and molecular markers. This broad classification has allowed the correlation between individual neural progenitor populations and their neuronal progeny, thus contributing to probe the cellular and molecular mechanisms involved in neuronal identity determination during central nervous system (CNS) development. In this review, we discuss the contribution of the proneural genes Neurogenin2 (Neurog2) and Achaete-scute homolog 1 (Ascl1) for the specification of neuronal phenotypes in the developing neocortex, cerebellum and retina. Then, we revise recent data on astroglia cell lineage reprogramming into induced neurons using the same proneural proteins to compare the neuronal phenotypes obtained from astroglial cells originated in those CNS regions. We conclude that Ascl1 and Neurog2 have different contributions to determine neuronal fates, depending on the neural progenitor or astroglial population expressing those proneural factors. Finally, we discuss some possible explanations for these seemingly conflicting effects of Ascl1 and Neurog2 and propose future approaches to further dissect the molecular mechanisms of neuronal identity specification.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Animals , Astrocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cerebellum , Embryonic Development , Gene Expression Regulation, Developmental/genetics , Humans , Neocortex , Nerve Tissue Proteins/genetics , Neurogenesis/physiology , Neurons/metabolism , Retina , Stem Cells/metabolism
19.
PLoS Negl Trop Dis ; 13(1): e0007089, 2019 01.
Article in English | MEDLINE | ID: mdl-30689631

ABSTRACT

BACKGROUND: Leprosy is a treatable infectious disease caused by Mycobacterium leprae. However, there is additional morbidity from leprosy-associated pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL), which occur in 1 in 3 people with leprosy, even with effective treatment of M. leprae. There is currently no predictive marker in use to indicate which people with leprosy will develop these debilitating immune reactions. Our peripheral blood mononuclear cell (PBMC) transcriptome analysis revealed that activation of the classical complement pathway is common to both RR and ENL. Additionally, differential expression of immunoglobulin receptors and B cell receptors during RR and ENL support a role for the antibody-mediated immune response during both RR and ENL. In this study, we investigated B-cell immunophenotypes, total and M. leprae-specific antibodies, and complement levels in leprosy patients with and without RR or ENL. The objective was to determine the role of these immune mediators in pathogenesis and assess their potential as biomarkers of risk for immune reactions in people with leprosy. METHODOLOGY/FINDINGS: We followed newly diagnosed leprosy cases (n = 96) for two years for development of RR or ENL. They were compared with active RR (n = 35), active ENL (n = 29), and healthy household contacts (n = 14). People with leprosy who subsequently developed ENL had increased IgM, IgG1, and C3d-associated immune complexes with decreased complement 4 (C4) at leprosy diagnosis. People who developed RR also had decreased C4 at leprosy diagnosis. Additionally, elevated anti-M. leprae antibody levels were associated with subsequent RR or ENL. CONCLUSIONS: Differential co-receptor expression and immunoglobulin levels before and during immune reactions intimate a central role for humoral immunity in RR and ENL. Decreased C4 and elevated anti-M. leprae antibodies in people with new diagnosis of leprosy may be risk factors for subsequent development of leprosy immune reactions.


Subject(s)
Antibodies, Bacterial/blood , Complement C3d/analysis , Complement C4/analysis , Erythema Nodosum/epidemiology , Immunoglobulin G/blood , Immunoglobulin M/blood , Leprosy, Lepromatous/epidemiology , Mycobacterium leprae/immunology , Adult , Aged , Antibodies, Bacterial/immunology , B-Lymphocytes/immunology , Complement C3d/immunology , Complement C4/immunology , Erythema Nodosum/blood , Erythema Nodosum/immunology , Female , Gene Expression Profiling , Humans , Immunity, Active/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Leprosy, Lepromatous/blood , Leprosy, Lepromatous/immunology , Male , Middle Aged , Risk Factors
20.
J Neurosci ; 27(42): 11376-88, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-17942732

ABSTRACT

The cellular diversity of the cerebral cortex is thought to arise from progenitors located in the ventricular zone and subventricular zone in the telencephalon. Here we describe a novel source of progenitors located outside these two major germinative zones of the mouse cerebral cortex that contributes to neurogenesis and gliogenesis. Proliferating cells first appear in the preplate of the embryonic cerebral cortex and further increase in the marginal zone during mid and late neurogenesis. The embryonic marginal zone progenitors differ in their molecular characteristics as well as the size and identity of their clonal progeny from progenitors isolated from the ventricular zone and subventricular zone. Time-lapse video microscopy and clonal analysis in vitro revealed that the marginal zone progenitor pool contains a large fraction of oligodendrocyte or astrocyte progenitors, as well as neuronal and bipotent progenitors. Thus, marginal zone progenitors are heterogenous in regard to their fate specification, as well as in regard to their region of origin (pallial and subpallial) as revealed by in vivo fate mapping. The local environment in the marginal zone tightly regulates the size of this novel progenitor pool, because both basement membrane defects in laminin gamma1-/- mice or alterations in the cellular composition of the marginal zone in Pax6 Small Eye mutant mice lead to an increase in the marginal zone progenitor pool. In conclusion, we have identified a novel source of neuronal and glial progenitors in the marginal zone of the developing cerebral cortex with properties notably distinct from those of ventricular zone and subventricular zone progenitors.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/embryology , Neuroglia/cytology , Neurons/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Cerebral Cortex/growth & development , Female , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Neuroglia/physiology , Neurons/physiology , Organogenesis/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL