Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Ecol Lett ; 26(7): 1095-1107, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37125435

ABSTRACT

Migratory connectivity, reflecting the extent by which migrants tend to maintain their reciprocal positions in seasonal ranges, can assist in the conservation and management of mobile species, yet relevant drivers remain unclear. Taking advantage of an exceptionally large (~150,000 individuals, 83 species) and more-than-a-century-long dataset of bird ringing encounters, we investigated eco-evolutionary drivers of migratory connectivity in both short- and long-distance Afro-Palearctic migratory birds. Connectivity was strongly associated with geographical proxies of migration costs and was weakly influenced by biological traits and phylogeny, suggesting the evolutionary lability of migratory behaviour. The large intraspecific variability in avian migration strategies, through which most species geographically split into distinct migratory populations, explained why most of them were significantly connected. By unravelling key determinants of migratory connectivity, our study improves knowledge about the resilience of avian migrants to ecological perturbations, providing a critical tool to inform transboundary conservation and management strategies at the population level.


Subject(s)
Animal Migration , Birds , Humans , Animals , Biological Evolution , Phylogeny , Population Dynamics , Seasons
2.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35617136

ABSTRACT

The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.


Subject(s)
Genome, Mitochondrial , Swallows , Africa , Animals , Asia , Female , Humans , Phylogeography , Swallows/genetics
3.
Sensors (Basel) ; 23(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37177569

ABSTRACT

The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor.

4.
Sensors (Basel) ; 21(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34502828

ABSTRACT

In view of the need for communication with distributed sensors/items, this paper presents the design of a single-port antenna with dual-mode operation, representing the front-end of a future generation tag acting as a position sensor, with identification and energy harvesting capabilities. An Archimedean spiral covers the lower European Ultra-Wideband (UWB) frequency range for communication/localization purposes, whereas a non-standard dipole operates in the Ultra High Frequency (UHF) band to wirelessly receive the energy. The versatility of the antenna is guaranteed by the inclusion of a High Impedance Surface (HIS) back layer, which is responsible for the low-profile stack-up and the insensitivity to the background material. A conformal design, supported by 3D-printing technology, is pursued to check the versatility of the proposed architecture in view of any application involving its deformation and tracking/powering operations.

5.
Sensors (Basel) ; 21(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502625

ABSTRACT

This paper is aimed at the characterization and manufacturing of an SMA coaxial fed compact blade antenna with dual frequency characteristics for broadband applications on board of Unmanned Air Vehicles (UAVs). This antenna is linearly polarized, and it combines the benefits of Automatic Dependent Surveillance-Broadcast (ADS-B) and 5th Generation (5G) communications in one single element, covering both the 1.030-1.090 GHz and the 3.4-3.8 GHz bands thanks to a bent side and a 'C' shaped slot within the radiation element. Starting from the simulation outcomes on an ideal ground plane, the results are here extended to a bent ground plane and on two UAV commercial CAD models. Details of manufacturing of the antenna in both aluminium and FR-4 substrate materials are presented. The comparison between measurements and simulations is discussed in terms of return loss, bandwidth, gain, and radiation pattern. Results show an antenna with a low profile and a simple structure that can be employed in various wideband communication systems, suiting future UAV assisted 5G networks while being perfectly compliant with forthcoming ADS-B based Detect-And-Avoid (DAA) technologies in Unmanned Aerial Traffic Management (UTM).

6.
Sensors (Basel) ; 21(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429868

ABSTRACT

This work describes the design, implementation, and validation of a wireless sensor network for predictive maintenance and remote monitoring in metal-rich, electromagnetically harsh environments. Energy is provided wirelessly at 2.45 GHz employing a system of three co-located active antennas designed with a conformal shape such that it can power, on-demand, sensor nodes located in non-line-of-sight (NLOS) and difficult-to-reach positions. This allows for eliminating the periodic battery replacement of the customized sensor nodes, which are designed to be compact, low-power, and robust. A measurement campaign has been conducted in a real scenario, i.e., the engine compartment of a car, assuming the exploitation of the system in the automotive field. Our work demonstrates that a one radio-frequency (RF) source (illuminator) with a maximum effective isotropic radiated power (EIRP) of 27 dBm is capable of transferring the energy of 4.8 mJ required to fully charge the sensor node in less than 170 s, in the worst case of 112-cm distance between illuminator and node (NLOS). We also show how, in the worst case, the transferred power allows the node to operate every 60 s, where operation includes sampling accelerometer data for 1 s, extracting statistical information, transmitting a 20-byte payload, and receiving a 3-byte acknowledgment using the extremely robust Long Range (LoRa) communication technology. The energy requirement for an active cycle is between 1.45 and 1.65 mJ, while sleep mode current consumption is less than 150 nA, allowing for achieving the targeted battery-free operation with duty cycles as high as 1.7%.

7.
Sensors (Basel) ; 19(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871107

ABSTRACT

In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users.


Subject(s)
Artificial Intelligence , Internet , Aged , Aged, 80 and over , Delivery of Health Care , Female , Humans , Male
8.
Mol Ecol ; 26(21): 6100-6109, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28851004

ABSTRACT

Individuals differ in realized fitness but the genetic/phenotypic traits that underpin such variation are often unknown. Telomere dynamics may be a major source of variation in fitness traits because physiological telomere shortening depends on environmental and genetic factors and may impair individual performance. Here, we showed that, in a population of a socially monogamous, biparental passerine bird, the barn swallow (Hirundo rustica), breeding in northern Italy, telomere length (TL) of both adult males and females positively correlated with seasonal reproductive and fledging success, as expected because long telomeres are supposed to boost performance. Telomere length was correlated with sexually dimorphic coloration in both sexes, showing for the first time in any species that coloration reliably reflects TL and may mediate mutual mate choice, leading to the observed positive assortative mating for TL in the barn swallow. Thus, TL appears to be associated with variation in a major fitness trait and may be an ultimate target of mate choice, as individuals of both sexes can use coloration to adaptively choose high-quality mates that possess long telomeres.


Subject(s)
Feathers , Reproduction/physiology , Swallows/physiology , Telomere/ultrastructure , Animals , Female , Genetic Fitness , Italy , Linear Models , Male , Pigmentation , Seasons , Swallows/genetics , Telomere Shortening
9.
Sensors (Basel) ; 17(8)2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28788084

ABSTRACT

We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

10.
Toxics ; 12(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38922088

ABSTRACT

Microplastic pollution is a pervasive global issue affecting various ecosystems. Despite the escalating production and well-documented contamination in both aquatic and terrestrial environments, the research focused on airborne microplastics and their interaction with terrestrial birds remains limited. In this study, we collected fecal sacs from Common swifts (Apus apus) to investigate their diet and to evaluate the potential ingestion of microplastics by both adults and nestlings. The diet was mainly composed of Hymenoptera and Coleoptera and did not differ among sexes and age classes. The 33% of nestlings' and 52% of adults' fecal sacs contained anthropogenic items, the totality of which was in the shape form of fibers. The 19.4% of the anthropogenic items were chemically characterized as microplastics, either polyethylene terephthalate (PET; two microfibers) or cellophane (four microfibers). Airborne anthropogenic items, including microplastic, might be passively ingested during the Common swift aerial feeding. In addition, our findings suggest that these ingested microparticles have the potential to be transferred to the offspring through food. While further research is essential to elucidate the pathways of microplastic ingestion, our results reinforce the evidence of the transfer of anthropogenic items from the atmosphere to the biota.

11.
Mov Ecol ; 11(1): 47, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528451

ABSTRACT

BACKGROUND: The study of the timing of migration is fundamental to the understanding of the ecology of many bird species and their response to climate change, and it has important conservation and management implications e.g., for assessing the hunting seasons according to the EU Directive 2009/147/EC (Birds Directive). METHODS: We developed a new method for the analysis of ringing data (both first capture and re-encounters) and citizen science observations, to assess the timing of pre- and post-nuptial migration of birds. This method was tested on the Song Thrush Turdus philomelos, using i) the Bird Ringing Database hosted by the ISPRA Italian Ringing Centre from the whole Italian peninsula, the three closest large islands (Sicily, Sardinia and Corsica), and Canton Ticino (Switzerland) and ii) the eBird data for the same study area. RESULTS: The results from both datasets consistently showed that pre-nuptial migration starts during the first 10-day period of January (Jan 1) in some central and southern areas of the Italian peninsula, in central Sicily, southern Sardinia, and Corsica. The onset of migration occurs on Jan 2 in the rest of central and southern Italy, Sicily and Sardinia, and western Liguria, while it starts later in the north-eastern Alps, up to Mar 3. The end of post-nuptial migration is more synchronous, occurring on Nov 1 across most of Italy, slightly earlier (Oct 3) in northern Italy and later (Nov 2) in Sicily. The uncertainty of the estimated dates was < 2 days in most cases. CONCLUSION: This method represents a novel and valuable tool for the analyses of the timing of migration using ringing and citizen science data and provides an important contribution to the Key Concepts Document of the EU Birds Directive, where migration timings are considered and used to define the hunting period of birds.

12.
Curr Zool ; 69(3): 255-263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37351297

ABSTRACT

According to classical prediction of aerodynamic theory, birds and other powered fliers that migrate over long distances should have longer and more pointed wings than those that migrate less. However, the association between wing morphology and migratory behavior can be masked by contrasting selective pressures related to foraging behavior, habitat selection and predator avoidance, possibly at the cost of lower flight energetic efficiency. We studied the handwing morphology of Eurasian barn swallows Hirundo rustica from four populations representing a migration distance gradient. This species is an aerial insectivore, so it flies extensively while foraging, and may migrate during the day using a 'fly-and-forage' migration strategy. Prolonged foraging flights may reinforce the effects of migration distance on flight morphology. We found that two wings' aerodynamic properties-isometric handwing length and pointedness, both favoring energetically efficient flight, were more pronounced in barn swallows from populations undertaking longer seasonal migrations compared to less migratory populations. Our result contrast with two recent interspecific comparative studies that either reported no relationship or reported a negative relationship between pointedness and the degree of migratory behavior in hirundines. Our results may thus contribute to confirming the universality of the rule that longer migrations are associated with more pointed wings.

13.
Curr Zool ; 68(1): 93-101, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169632

ABSTRACT

When vertebrates face stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, generating a rapid increase in circulating glucocorticoid (GC) stress hormones followed by a return to baseline levels. However, repeated activation of HPA axis may lead to increase in oxidative stress. One target of oxidative stress is telomeres, nucleoprotein complexes at the end of chromosomes that shorten at each cell division. The susceptibility of telomeres to oxidizing molecules has led to the hypothesis that increased GC levels boost telomere shortening, but studies on this link are scanty. We studied if, in barn swallows Hirundo rustica, changes in adult erythrocyte telomere length between 2 consecutive breeding seasons are related to corticosterone (CORT) (the main avian GC) stress response induced by a standard capture-restraint protocol. Within-individual telomere length did not significantly change between consecutive breeding seasons. Second-year individuals showed the highest increase in circulating CORT concentrations following restraint. Moreover, we found a decline in female stress response along the breeding season. In addition, telomere shortening covaried with the stress response: a delayed activation of the negative feedback loop terminating the stress response was associated with greater telomere attrition. Hence, among-individual variation in stress response may affect telomere dynamics.

14.
PeerJ ; 10: e13927, 2022.
Article in English | MEDLINE | ID: mdl-36221261

ABSTRACT

Background: Microbial communities are found on any part of animal bodies exposed to the environment, and are particularly prominent in the gut, where they play such a major role in the host metabolism and physiology to be considered a "second genome". These communities, collectively known as "microbiome", are well studied in humans and model species, while studies on wild animals have lagged behind. This is unfortunate, as different studies suggested the central role of the gut microbiome in shaping the evolutionary trajectories of species and their population dynamics. Among bird species, only few descriptions of raptor gut microbiomes are available, and mainly carried out on captive individuals. Objectives: In this study, we aimed at improving the knowledge of raptor microbiomes by providing the first description of the gut microbiome of the lesser kestrel (Falco naumanni), a cavity-nesting raptor. Results: The gut microbiome of the lesser kestrel was dominated by Actinobacteria (83.9%), Proteobacteria (8.6%) and Firmicutes (4.3%). We detected no differences in microbiome composition between males and females. Furthermore, the general composition of the microbiome appears similar to that of phylogenetically distant cavity-nesting species. Conclusions: Our results broaden the knowledge of raptor gut microbial communities and let us hypothesize that the distinct nest environment in terms of microclimate and presence of organic material from previous breeding attempts, to which cavity-nesting species that reuse the nest are exposed, might be an important driver shaping microbiomes.


Subject(s)
Falconiformes , Microbiota , Raptors , Humans , Animals , Female , Microbiota/genetics , Bacteria , Animals, Wild
15.
Environ Sci Pollut Res Int ; 28(13): 15828-15837, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33244688

ABSTRACT

Trace elements are widespread contaminants that can potentially threaten ecosystems and human health. Considering their distribution and toxicity, monitoring their presence in animals represents a priority in environmental risk assessment. Migratory birds have been suggested to be useful biomonitors for trace elements because they can provide information on contaminants even from remote areas that they may exploit during their life cycle. The aim of this study was to analyse the contamination fingerprint of trace elements of African non-breeding staging grounds and European breeding areas in a long-distance migratory passerine bird, the barn swallow (Hirundo rustica). We collected feathers grown in the African non-breeding grounds and those grown in the breeding areas of Northern Italy and measured the levels of 12 trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se and Zn) by DRC-ICP-MS. Multivariate analysis showed that elemental profiles of feathers grown in African non-breeding areas and in the Italian breeding ones clearly differed, with feathers grown in Africa showing higher concentrations of Al, Cu, Fe, Mn and Ni, but lower concentrations of As, Se and Zn, compared to those grown in Italy. In addition, levels of trace elements were age-dependent, with higher levels in older individuals than in younger ones. Our results add to the growing evidence that feathers of long-distance migratory birds are useful tools to monitor trace elements contamination profiles across continents.


Subject(s)
Swallows , Trace Elements , Africa , Aged , Animals , Ecosystem , Environmental Monitoring , Feathers/chemistry , Humans , Italy , Trace Elements/analysis
16.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Article in English | MEDLINE | ID: mdl-31069386

ABSTRACT

Microbiomes can be considered as 'second genomes' for the host, and can deeply affect its physiology, behaviour and fitness. We investigated the cloacal microbiomes (CMs) of adult and nestling barn swallows (Hirundo rustica), a small insectivorous migratory passerine bird, in order to assess whether CM structure was related to major ecological traits of individuals. Illumina sequencing of the V5-V6 hypervariable regions of the bacterial 16S rRNA gene showed that barn swallow CMs were dominated by Proteobacteria, Firmicutes, Actinobacteria, Tenericutes and Bacteroidetes. Nestling CMs were more similar to one another than adult ones, but showed higher alpha diversity. Sibling nestlings had more similar CMs than non-sibling ones. CMs of adult males also differed from those of adult females, but pair members had more similar CMs than expected by chance. In contrast, CMs did not differ between male and female nestlings. Finally, in adults, CMs strongly different from the 'average' CM were associated to lower survival prospects of the host. The CMs of a bird species in the wild are therefore related to important traits of individuals, such as survival, suggesting that microbiomes should be included among the traits examined in ecological studies.


Subject(s)
Bacteria/isolation & purification , Cloaca/microbiology , Microbiota , Swallows/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Female , High-Throughput Nucleotide Sequencing , Male , Molecular Typing , Phenotype , RNA, Bacterial , RNA, Ribosomal, 16S
17.
Sci Rep ; 9(1): 6505, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31019206

ABSTRACT

Regulation of gene expression can occur via epigenetic effects as mediated by DNA methylation. The potential for epigenetic effects to be transmitted across generations, thus modulating phenotypic variation and affecting ecological and evolutionary processes, is increasingly appreciated. However, the study of variation in epigenomes and inter-generational transmission of epigenetic alterations in wild populations is at its very infancy. We studied sex- and age-related variation in DNA methylation and parent-offspring resemblance in methylation profiles in the barn swallows. We focused on a class of highly conserved 'clock' genes (clock, cry1, per2, per3, timeless) relevant in the timing of activities of major ecological importance. In addition, we considerably expanded previous analyses on the relationship between methylation at clock genes and breeding date, a key fitness trait in barn swallows. We found positive assortative mating for methylation at one clock locus. Methylation varied between the nestling and the adult stage, and according to sex. Individuals with relatively high methylation as nestlings also had high methylation levels when adults. Extensive parent-nestling resemblance in methylation levels was observed. Occurrence of extra-pair fertilizations allowed to disclose evidence hinting at a prevalence of paternal germline or sperm quality effects over common environment effects in generating father-offspring resemblance in methylation. Finally, we found an association between methylation at the clock poly-Q region, but not at other loci, and breeding date. We thus provided evidence for sex-dependent variation and the first account of parent-offspring resemblance in methylation in any wild vertebrate. We also showed that epigenetics may influence phenotypic plasticity of timing of life cycle events, thus having a major impact on fitness.


Subject(s)
Avian Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , DNA Methylation , Epigenesis, Genetic/genetics , Animal Migration , Animals , Female , Gene Expression , Inheritance Patterns , Male , Nesting Behavior , Reproduction/genetics
18.
Biol Rev Camb Philos Soc ; 92(3): 1582-1600, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27615554

ABSTRACT

Sexual selection arises from competition among individuals for access to mates, resulting in the evolution of conspicuous sexually selected traits, especially when inter-sexual competition is mediated by mate choice. Different sexual selection regimes may occur among populations/subspecies within the same species. This is particularly the case when mate choice is based on multiple sexually selected traits. However, empirical evidence supporting this hypothesis at the among-populations level is scarce. We conducted a meta-analysis of the intensity of sexual selection on the largest database to date for a single species, the barn swallow (Hirundo rustica), relying on quantitative estimates of sexual selection. The intensity of sexual selection was expressed as the strength (effect size) of the relationships between six plumage ornaments (tail length, tail asymmetry, size of white spots on tail, ventral plumage colour, throat plumage colour and throat patch size) and several fitness proxies related to reproduction, parental care, offspring quality, arrival date from spring migration, and survival. The data were gathered for four geographically separated subspecies (H. r. rustica, H. r. erythrogaster, H. r. gutturalis, H. r. transitiva). The overall mean effect size (Zr = 0.214; 95% confidence interval = 0.175-0.254; N = 329) was of intermediate magnitude, with intensity of sexual selection being stronger in males than in females. Effect sizes varied during the breeding cycle, being larger before egg deposition, when competition for access to mates reaches its maximum (i.e. in the promiscuous part of the breeding cycle), and decreasing thereafter. In addition, effect sizes from experiments were not significantly larger than those from correlative studies. Finally, sexual selection on different sexually dimorphic traits varied among subspecies. This last result suggests that morphological divergence among populations has partly arisen from divergent sexual selection, which may eventually lead to speciation.


Subject(s)
Mating Preference, Animal/physiology , Seasons , Swallows/physiology , Animals , Female , Geography , Male , Phenotype , Reproduction
19.
Evolution ; 71(10): 2457-2468, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28722759

ABSTRACT

Natural and sexual selection arise when individual fitness varies according to focal traits. Extra-pair paternities (EPPs) can affect the intensity of selection by influencing variance in fitness among individuals. Studies of selection require that individual fitness is estimated using proxies of lifetime reproductive success (LRS). However, estimating LRS is difficult in large, open populations where EPPs cause reallocation of biological paternity. Here, we used extensive field sampling to estimate LRS in a population of barn swallows (Hirundo rustica) to estimate selection on lifespan and ornamental traits of males. We found selection on lifespan mediated both by within- and extra-pair fertilization success and selection on tail length mediated by within- but not extra-pair fertilization success. In addition, we found selection on tail white spots via extra-pair fertilization success after controlling for selection on other traits. These results were not confounded by factors that hamper studies of LRS, including nonexhaustive sampling of offspring and biased sampling of males. Hence, natural and sexual selection mediated by LRS operates on lifespan, tail length, and size of the tail white spots in barn swallows.


Subject(s)
Fertilization , Longevity , Selection, Genetic , Swallows/genetics , Animals , Feathers/anatomy & histology , Female , Male , Mating Preference, Animal , Swallows/growth & development , Swallows/physiology , Tail/anatomy & histology
20.
PLoS One ; 11(11): e0165055, 2016.
Article in English | MEDLINE | ID: mdl-27851741

ABSTRACT

Avian communication has been traditionally believed to be mainly mediated by visual and auditory channels. However, an increasing number of studies are disclosing the role of olfaction in the interaction of birds with their social environment and with other species, as well as in other behaviors such as nest recognition, food location and navigation. Olfaction has also been suggested to play a role in parent-offspring communication not only in the post- but also in the pre-hatching period. Volatile compounds produced during embryogenesis and passively released through the eggshell pores may indeed represent the only cue at parents' disposal to assess offspring quality, including the sex composition of their clutch before hatching. In turn, sex identification before hatching may mediate adaptive strategies of allocation to either sex. In the present study, we analyzed odour composition of barn swallow eggs incubated in their nest in order to identify any sex-related differences in volatile compounds emitted. For the first time in any bird species, we also investigated whether odour composition is associated with relatedness. The evidence of differences in odour composition among eggs containing embryos of either sex indicates that parents have a cue to identify their brood sex composition even before hatching which can be used to modulate their behavior accordingly. Moreover, odour similarity within nests may represent the prerequisite for kin recognition in this species.


Subject(s)
Embryo, Nonmammalian/metabolism , Odorants/analysis , Ovum/metabolism , Sex Characteristics , Swallows/embryology , Volatile Organic Compounds/analysis , Animals , Egg Shell/metabolism , Female , Linear Models , Male
SELECTION OF CITATIONS
SEARCH DETAIL