Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Country/Region as subject
Publication year range
1.
JAMA ; 331(6): 482-490, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38349371

ABSTRACT

Importance: Repeated mass distribution of azithromycin has been shown to reduce childhood mortality by 14% in sub-Saharan Africa. However, the estimated effect varied by location, suggesting that the intervention may not be effective in different geographical areas, time periods, or conditions. Objective: To evaluate the efficacy of twice-yearly azithromycin to reduce mortality in children in the presence of seasonal malaria chemoprevention. Design, Setting, and Participants: This cluster randomized placebo-controlled trial evaluating the efficacy of single-dose azithromycin for prevention of all-cause childhood mortality included 341 communities in the Nouna district in rural northwestern Burkina Faso. Participants were children aged 1 to 59 months living in the study communities. Interventions: Communities were randomized in a 1:1 ratio to receive oral azithromycin or placebo distribution. Children aged 1 to 59 months were offered single-dose treatment twice yearly for 3 years (6 distributions) from August 2019 to February 2023. Main Outcomes and Measures: The primary outcome was all-cause childhood mortality, measured during a twice-yearly enumerative census. Results: A total of 34 399 children (mean [SD] age, 25.2 [18] months) in the azithromycin group and 33 847 children (mean [SD] age, 25.6 [18] months) in the placebo group were included. A mean (SD) of 90.1% (16.0%) of the censused children received the scheduled study drug in the azithromycin group and 89.8% (17.1%) received the scheduled study drug in the placebo group. In the azithromycin group, 498 deaths were recorded over 60 592 person-years (8.2 deaths/1000 person-years). In the placebo group, 588 deaths were recorded over 58 547 person-years (10.0 deaths/1000 person-years). The incidence rate ratio for mortality was 0.82 (95% CI, 0.67-1.02; P = .07) in the azithromycin group compared with the placebo group. The incidence rate ratio was 0.99 (95% CI, 0.72-1.36) in those aged 1 to 11 months, 0.92 (95% CI, 0.67-1.27) in those aged 12 to 23 months, and 0.73 (95% CI, 0.57-0.94) in those aged 24 to 59 months. Conclusions and Relevance: Mortality in children (aged 1-59 months) was lower with biannual mass azithromycin distribution in a setting in which seasonal malaria chemoprevention was also being distributed, but the difference was not statistically significant. The study may have been underpowered to detect a clinically relevant difference. Trial Registration: ClinicalTrials.gov Identifier: NCT03676764.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Child Mortality , Malaria , Humans , Azithromycin/supply & distribution , Azithromycin/therapeutic use , Burkina Faso/epidemiology , Chemoprevention/methods , Chemoprevention/statistics & numerical data , Child Mortality/trends , Malaria/epidemiology , Malaria/mortality , Malaria/prevention & control , Anti-Bacterial Agents/supply & distribution , Anti-Bacterial Agents/therapeutic use , Seasons , Infant , Child, Preschool
2.
BMC Infect Dis ; 22(1): 285, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35337289

ABSTRACT

BACKGROUND: Azithromycin is a broad-spectrum antibiotic that has moderate antimalarial activity and has been shown to reduce all-cause mortality when biannually administered to children under five in high mortality settings in sub-Saharan Africa. One potential mechanism for this observed reduction in mortality is via a reduction in malaria transmission. METHODS: We evaluated whether a single oral dose of azithromycin reduces malaria positivity by rapid diagnostic test (RDT). We conducted an individually randomized placebo-controlled trial in Burkina Faso during the high malaria transmission season in August 2020. Children aged 8 days to 59 months old were randomized to a single oral dose of azithromycin (20 mg/kg) or matching placebo. At baseline and 14 days following treatment, we administered a rapid diagnostic test (RDT) to detect Plasmodium falciparum and measured tympanic temperature for all children. Caregiver-reported adverse events and clinic visits were recorded at the day 14 visit. RESULTS: We enrolled 449 children with 221 randomized to azithromycin and 228 to placebo. The median age was 32 months and 48% were female. A total of 8% of children had a positive RDT for malaria at baseline and 11% had a fever (tympanic temperature ≥ 37.5 °C). In the azithromycin arm, 8% of children had a positive RDT for malaria at 14 days compared to 7% in the placebo arm (P = 0.65). Fifteen percent of children in the azithromycin arm had a fever ≥ 37.5 °C compared to 21% in the placebo arm (P = 0.12). Caregivers of children in the azithromycin group had lower odds of reporting fever as an adverse event compared to children in the placebo group (OR 0.41, 95% CI 0.18-0.96, P = 0.04). Caregiver-reported clinic visits were uncommon, and there were no observed differences between arms (P = 0.32). CONCLUSIONS: We did not find evidence that a single oral dose of azithromycin reduced malaria positivity during the high transmission season. Caregiver-reported fever occurred less often in children receiving azithromycin compared to placebo, indicating that azithromycin may have some effect on non-malarial infections. Trial registration Clinicaltrials.gov NCT04315272, registered 19/03/2020.


Subject(s)
Antimalarials , Malaria , Anti-Bacterial Agents/therapeutic use , Antimalarials/therapeutic use , Azithromycin/therapeutic use , Burkina Faso , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Malaria/drug therapy , Male
3.
BMC Public Health ; 22(1): 1676, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064368

ABSTRACT

BACKGROUND: The current COVID-19 pandemic affects the entire world population and has serious health, economic and social consequences. Assessing the prevalence of COVID-19 through population-based serological surveys is essential to monitor the progression of the epidemic, especially in African countries where the extent of SARS-CoV-2 spread remains unclear. METHODS: A two-stage cluster population-based SARS-CoV-2 seroprevalence survey was conducted in Bobo-Dioulasso and in Ouagadougou, Burkina Faso, Fianarantsoa, Madagascar and Kumasi, Ghana between February and June 2021. IgG seropositivity was determined in 2,163 households with a specificity improved SARS-CoV-2 Enzyme-linked Immunosorbent Assay. Population seroprevalence was evaluated using a Bayesian logistic regression model that accounted for test performance and age, sex and neighbourhood of the participants. RESULTS: Seroprevalence adjusted for test performance and population characteristics were 55.7% [95% Credible Interval (CrI) 49·0; 62·8] in Bobo-Dioulasso, 37·4% [95% CrI 31·3; 43·5] in Ouagadougou, 41·5% [95% CrI 36·5; 47·2] in Fianarantsoa, and 41·2% [95% CrI 34·5; 49·0] in Kumasi. Within the study population, less than 6% of participants performed a test for acute SARS-CoV-2 infection since the onset of the pandemic. CONCLUSIONS: High exposure to SARS-CoV-2 was found in the surveyed regions albeit below the herd immunity threshold and with a low rate of previous testing for acute infections. Despite the high seroprevalence in our study population, the duration of protection from naturally acquired immunity remains unclear and new virus variants continue to emerge. This highlights the importance of vaccine deployment and continued preventive measures to protect the population at risk.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , Burkina Faso/epidemiology , COVID-19/epidemiology , Ghana/epidemiology , Humans , Madagascar/epidemiology , Pandemics , Seroepidemiologic Studies
4.
J Infect Dis ; 223(12 Suppl 2): S81-S90, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33906223

ABSTRACT

BACKGROUND: Insecticide-based vector control is responsible for reducing malaria mortality and morbidity. Its success depends on a better knowledge of the vector, its distribution, and resistance status to the insecticides used. In this paper, we assessed Anopheles gambiae sensu lato (A gambiae s.l.) population resistance to pyrethroids in different ecological settings. METHODS: The World Health Organization standard bioassay test was used to assess F0A gambiae s.l. susceptibility to pyrethroids. Biochemical Synergist assays were conducted with piperonyl butoxide (PBO), S,S,S-tributyl phosphotritioate, and diethyl maleate. L1014F, L1014S, and N1575Y knockdown resistance (kdr) mutations were investigated using TaqMan genotyping. RESULTS: Anopheles gambiae sensu lato was composed of Anopheles arabienisis, Anopheles coluzzii, and A gambiae in all study sites. Anopheles gambiae sensu lato showed a strong phenotypic resistance to deltamethrin and permethrin in all sites (13% to 41% mortality). In many sites, pre-exposure to synergists partially improved the mortality rate suggesting the presence of detoxifying enzymes. The 3 kdr (L1014F, L1014S, and N1575Y) mutations were found, with a predominance of L1014F, in all species. CONCLUSIONS: Multiple resistance mechanisms to pyrethroids were observed in A gambiae s.l. in Mali. The PBO provided a better partial restoration of susceptibility to pyrethroids, suggesting that the efficacy of long-lasting insecticidal nets may be improved with PBO.


Subject(s)
Anopheles/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Pyrethrins/pharmacology , Animals , Anopheles/genetics , Insecticide Resistance/drug effects , Insecticide Resistance/genetics , Mali , Mosquito Vectors/genetics
5.
Trop Med Int Health ; 26(7): 810-822, 2021 07.
Article in English | MEDLINE | ID: mdl-33683751

ABSTRACT

OBJECTIVES: This study investigated the molecular epidemiology of respiratory syncytial virus (RSV) among febrile children with acute respiratory tract infection in Ghana, Gabon, Tanzania and Burkina Faso between 2014 and 2017 as well as the evolution and diversification of RSV strains from other sub-Saharan countries. METHODS: Pharyngeal swabs were collected at four study sites (Agogo, Ghana: n = 490; Lambaréné, Gabon: n = 182; Mbeya, Tanzania: n = 293; Nouna, Burkina Faso: n = 115) and analysed for RSV and other respiratory viruses using rtPCR. For RSV-positive samples, sequence analysis of the second hypervariable region of the G gene was performed. A dataset of RSV strains from sub-Saharan Africa (2011-2017) currently available in GenBank was compiled. Phylogenetic analysis was conducted to identify the diversity of circulating RSV genotypes. RESULTS: In total, 46 samples were tested RSV positive (Ghana n = 31 (6.3%), Gabon n = 4 (2.2%), Tanzania n = 9 (3.1%) and Burkina Faso n = 2 (1.7%)). The most common RSV co-infection was with rhinovirus. All RSV A strains clustered with genotype ON1 strains with a 72-nucleotide duplication and all RSV B strains belonged to genotype BAIX. Phylogenetic analysis of amino acid sequences from sub-Saharan Africa revealed the diversification into 11 different ON1 and 22 different BAIX lineages and differentiation of ON1 and BAIX strains into potential new sub-genotypes, provisionally named ON1-NGR, BAIX-KEN1, BAIX-KEN2 and BAIX-KEN3. CONCLUSION: The study contributes to an improved understanding of the molecular epidemiology of RSV infection in sub-Saharan Africa. It provides the first phylogenetic data for RSV from Tanzania, Gabon and Burkina Faso and combines it with RSV strains from all other sub-Saharan countries currently available in GenBank.


Subject(s)
Molecular Epidemiology/methods , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human/genetics , Africa South of the Sahara , Burkina Faso , Child, Preschool , Female , Gabon , Genotype , Ghana , Glycosylation , Humans , Infant , Male , Phylogeny , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Tanzania
6.
Malar J ; 20(1): 360, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34465327

ABSTRACT

BACKGROUND: Azithromycin has recently been shown to reduce all-cause childhood mortality in sub-Saharan Africa. One potential mechanism of this effect is via the anti-malarial effect of azithromycin, which may help treat or prevent malaria infection. This study evaluated short- and longer-term effects of azithromycin on malaria outcomes in children. METHODS: Children aged 8 days to 59 months were randomized in a 1:1 fashion to a single oral dose of azithromycin (20 mg/kg) or matching placebo. Children were evaluated for malaria via thin and thick smear and rapid diagnostic test (for those with tympanic temperature ≥ 37.5 °C) at baseline and 14 days and 6 months after treatment. Malaria outcomes in children receiving azithromycin versus placebo were compared at each follow-up timepoint separately. RESULTS: Of 450 children enrolled, 230 were randomized to azithromycin and 220 to placebo. Children were a median of 26 months and 51% were female, and 17% were positive for malaria parasitaemia at baseline. There was no evidence of a difference in malaria parasitaemia at 14 days or 6 months after treatment. In the azithromycin arm, 20% of children were positive for parasitaemia at 14 days compared to 17% in the placebo arm (P = 0.43) and 7.6% vs. 5.6% in the azithromycin compared to placebo arms at 6 months (P = 0.47). CONCLUSIONS: Azithromycin did not affect malaria outcomes in this study, possibly due to the individually randomized nature of the trial. Trial registration This study is registered at clinicaltrials.gov (NCT03676751; registered 19 September 2018).


Subject(s)
Antimalarials/administration & dosage , Azithromycin/administration & dosage , Malaria/drug therapy , Parasitemia/drug therapy , Administration, Oral , Female , Humans , Infant , Infant, Newborn , Malaria/parasitology , Male , Parasitemia/parasitology
7.
Mol Cell Proteomics ; 18(4): 642-656, 2019 04.
Article in English | MEDLINE | ID: mdl-30630936

ABSTRACT

High-density peptide arrays are an excellent means to profile anti-plasmodial antibody responses. Different protein intrinsic epitopes can be distinguished, and additional insights are gained, when compared with assays involving the full-length protein. Distinct reactivities to specific epitopes within one protein may explain differences in published results, regarding immunity or susceptibility to malaria. We pursued three approaches to find specific epitopes within important plasmodial proteins, (1) twelve leading vaccine candidates were mapped as overlapping 15-mer peptides, (2) a bioinformatical approach served to predict immunogenic malaria epitopes which were subsequently validated in the assay, and (3) randomly selected peptides from the malaria proteome were screened as a control. Several peptide array replicas were prepared, employing particle-based laser printing, and were used to screen 27 serum samples from a malaria-endemic area in Burkina Faso, West Africa. The immunological status of the individuals was classified as "protected" or "unprotected" based on clinical symptoms, parasite density, and age. The vaccine candidate screening approach resulted in significant hits in all twelve proteins and allowed us (1) to verify many known immunogenic structures, (2) to map B-cell epitopes across the entire sequence of each antigen and (3) to uncover novel immunogenic epitopes. Predicting immunogenic regions in the proteome of the human malaria parasite Plasmodium falciparum, via the bioinformatics approach and subsequent array screening, confirmed known immunogenic sequences, such as in the leading malaria vaccine candidate CSP and discovered immunogenic epitopes derived from hypothetical or unknown proteins.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Malaria/immunology , Peptides/metabolism , Protein Array Analysis , Adolescent , Adult , Antibodies, Protozoan/immunology , Automation , Case-Control Studies , Child , Cluster Analysis , Female , Humans , Immunity, Humoral , Infant , Malaria/blood , Malaria Vaccines/immunology , Male , Middle Aged , Peptide Library , Plasmodium falciparum/immunology , Young Adult
8.
BMC Pediatr ; 21(1): 130, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731058

ABSTRACT

BACKGROUND: In lower resource settings, previous randomized controlled trials have demonstrated evidence of increased weight gain following antibiotic administration in children with acute illness. We conducted an individually randomized trial to assess whether single dose azithromycin treatment causes weight gain in a general population sample of children in Burkina Faso. METHODS: Children aged 8 days to 59 months were enrolled in November 2019 and followed through June 2020 in Nouna Town, Burkina Faso. Participants were randomly assigned to a single oral dose of azithromycin (20 mg/kg) or matching placebo. Anthropometric measurements were collected at baseline and 14 days and 6 months after enrollment. The primary anthropometric outcome was weight gain velocity in g/kg/day from baseline to 14 days and 6 months in separate linear regression models. RESULTS: Of 450 enrolled children, 230 were randomly assigned to azithromycin and 220 to placebo. Median age was 26 months (IQR 16 to 38 months) and 51% were female. At 14 days, children in the azithromycin arm gained a mean difference of 0.9 g/kg/day (95% CI 0.2 to 1.6 g/kg/day, P = 0.01) more than children in the placebo arm. There was no difference in weight gain velocity in children receiving azithromycin compared to placebo at 6 months (mean difference 0.04 g/kg/day, 95% CI - 0.05 to 0.13 g/kg/day, P = 0.46). There were no significant differences in other anthropometric outcomes. CONCLUSIONS: Transient increases in weight gain were observed after oral azithromycin treatment, which may provide short-term benefits. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT03676751 . Registered 19/09/2018.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Administration, Oral , Anti-Bacterial Agents/adverse effects , Azithromycin/adverse effects , Burkina Faso , Child , Child, Preschool , Double-Blind Method , Female , Humans , Infant , Male , Weight Gain
9.
Clin Infect Dis ; 70(3): 525-527, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31149703

ABSTRACT

We evaluated the effect of systemic antibiotics (azithromycin, amoxicillin, cotrimoxazole, or placebo) on the gut resistome in children aged 6 to 59 months. Azithromycin and cotrimoxazole led to an increase in macrolide and sulfonamide resistance determinants. Resistome expansion can be induced with a single course of antibiotics.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Anti-Bacterial Agents/therapeutic use , Azithromycin , Burkina Faso , Child, Preschool , Humans , Infant , Macrolides
10.
Clin Infect Dis ; 66(10): 1573-1580, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29177407

ABSTRACT

Background: In addition to protecting against measles, measles vaccine (MV) may have beneficial nonspecific effects. We tested the effect of an additional early MV on mortality and measles antibody levels. Methods: Children aged 4-7 months at rural health and demographic surveillance sites in Burkina Faso and Guinea-Bissau were randomized 1:1 to an extra early standard dose of MV (Edmonston-Zagreb strain) or no extra MV 4 weeks after the third diphtheria-tetanus-pertussis-hepatitis B-Haemophilus influenzae type b vaccine. All children received routine MV at 9 months. We assessed mortality through home visits and compared mortality from enrollment to age 3 years using Cox proportional hazards models, censoring for subsequent nontrial MV. Subgroups of participants had blood sampled to assess measles antibody levels. Results: Among 8309 children enrolled from 18 July 2012 to 3 December 2015, we registered 145 deaths (mortality rate: 16/1000 person-years). The mortality was lower than anticipated and did not differ by randomization group (hazard ratio, 1.05; 95% confidence interval, 0.75-1.46). At enrollment, 4% (16/447) of children in Burkina Faso and 21% (90/422) in Guinea-Bissau had protective measles antibody levels. By age 9 months, no measles-unvaccinated/-unexposed child had protective levels, while 92% (306/333) of early MV recipients had protective levels. At final follow-up, 98% (186/189) in the early MV group and 97% (196/202) in the control group had protective levels. Conclusions: Early MV did not reduce all-cause mortality. Most children were susceptible to measles infection at age 4-7 months and responded with high antibody levels to early MV. Clinical Trials Registration: NCT01644721.


Subject(s)
Antibodies, Viral/blood , Immunization Schedule , Measles Vaccine/administration & dosage , Measles Vaccine/immunology , Measles/prevention & control , Burkina Faso/epidemiology , Female , Guinea-Bissau/epidemiology , Humans , Infant , Male , Measles/blood , Measles/immunology , Measles virus/immunology
11.
Malar J ; 16(1): 63, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28166794

ABSTRACT

BACKGROUND: Malariometric information is needed to decide how to introduce malaria vaccines and evaluate their impact in sub-Saharan African countries. METHODS: This cross-sectional study (NCT01954264) was conducted between October and November, 2013, corresponding to the high malaria transmission season, in four sites with Health and Demographic Surveillance Systems (DSS) [two sites with moderate-to-high malaria endemicity in Burkina Faso (Nouna and Saponé) and two sites with low malaria endemicity in Senegal (Keur Socé and Niakhar)]. Children (N = 2421) were randomly selected from the DSS lists of the study sites and were stratified into two age groups (6 months-4 years and 5-9 years). A blood sample was collected from each child to evaluate parasite prevalence of Plasmodium falciparum and other Plasmodium species and gametocyte density by microscopy, and rapid diagnosis test in the event of fever within 24 h. Case report forms were used to evaluate malaria control measures and other factors. RESULTS: Plasmodium falciparum was identified in 707 (29.2%) children, with a higher prevalence in Burkina Faso than Senegal (57.5 vs 0.9% of children). In Burkina Faso, prevalence was 57.7% in Nouna and 41.9% in Saponé in the 6 months-4 years age group, and 75.4% in Nouna and 70.1% in Saponé in the 5-9 years age group. Infections with other Plasmodium species were rare and only detected in Burkina Faso. While mosquito nets were used by 88.6-97.0 and 64.7-80.2% of children in Burkina Faso and Senegal, other malaria control measures evaluated at individual level were uncommon. In Burkina Faso, exploratory analyses suggested that use of malaria treatment or any other medication within 14 days, and use of insecticide spray within 7 days decreased the prevalence of malaria infection; older age, rural residence, natural floor, grass/palm roof, and unavailability of electricity in the house were factors associated with increased malaria occurrence. CONCLUSIONS: Plasmodium falciparum infection prevalence in children younger than 10 years was 57.5% in Burkina Faso and 0.9% in Senegal, and variability was observed, among others, by age, study site and malaria control measures.


Subject(s)
Communicable Disease Control/methods , Disease Transmission, Infectious/prevention & control , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Animals , Burkina Faso/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Epidemiologic Studies , Female , Humans , Infant , Male , Plasmodium/classification , Plasmodium/isolation & purification , Prevalence , Senegal/epidemiology
12.
Malar J ; 15: 191, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-27059057

ABSTRACT

BACKGROUND: Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. METHODS: Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sites spanning 350 km that represented arid savannah, humid savannah, semi-forest and deep forest ecological zones, in areas where little was previously known about malaria vector populations. 1425 mosquito samples were analysed by molecular assays to determine species, genetic attributes, blood meal sources and Plasmodium infection status. RESULTS: Anopheles gambiae and Anopheles coluzzii were the major anophelines represented in all collections across the ecological zones, with A. coluzzii predominant in the arid savannah and A. gambiae in the more humid sites. The use of multiple collection methodologies across the sampling sites allows assessment of potential collection bias of the different methods. The L1014F kdr insecticide resistance mutation (kdr-w) is found at high frequency across all study sites. This mutation appears to have swept almost to fixation, from low frequencies 6 years earlier, despite the absence of widespread insecticide use for vector control. Rates of human feeding are very high across ecological zones, with only small fractions of animal derived blood meals in the arid and humid savannah. About 30 % of freshly blood-fed mosquitoes were positive for Plasmodium falciparum presence, while the rate of mosquitoes with established infections was an order of magnitude lower. CONCLUSIONS: The study represents detailed vector characterization from an understudied area in West Africa with endemic malaria transmission. The deep forest study site includes the epicenter of the 2014 Ebola virus epidemic. With new malaria control interventions planned in Guinea, these data provide a baseline measure and an opportunity to assess the outcome of future interventions.


Subject(s)
Anopheles/classification , Anopheles/growth & development , Insect Vectors , Plasmodium falciparum/isolation & purification , Animals , Anopheles/genetics , Gambia , Guinea , Humans , Mali
13.
J Infect Dis ; 211(5): 689-97, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25267980

ABSTRACT

BACKGROUND: Methylene blue (MB) has been shown to be safe and effective against falciparum malaria in Africa and to have pronounced gametocytocidal properties. METHODS: Three days of treatment with artesunate (AS)-amodiaquine (AQ) combined with MB was compared with AS-AQ treatment in a randomized controlled phase IIb study; the study included 221 children aged 6-59 months with uncomplicated falciparum malaria in Burkina Faso. The primary end point was gametocyte prevalence during follow-up, as determined by microscopy and real-time quantitative nucleic acid sequence-based amplification (QT-NASBA). RESULTS: The gametocyte prevalence of Plasmodium falciparum at baseline was 3.6% (microscopy) and 97% (QT-NASBA). It was significantly lower in the AS-AQ-MB than in the AS-AQ group on day 7 of follow-up (microscopy, 1.2% vs 8.9% [P < .05]; QT-NASBA, 36.7% vs 63.3% [P < .001]). Hemoglobin values were significantly lower in the AS-AQ-MB group than in the AS-AQ group at days 2 and 7 of follow-up. Vomiting of the study medication occurred significantly more frequently in the AS-AQ-MB group. CONCLUSIONS: The combination of MB with an artemisinin-based combination therapy has been confirmed to be effective against the gametocytes of P. falciparum. MB-based combinations need to be compared with primaquine-based combinations, preferably using MB in an improved pediatric formulation. Clinical Trials Registration: NCT01407887.


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Methylene Blue/therapeutic use , Amodiaquine/adverse effects , Antimalarials/adverse effects , Artemisinins/adverse effects , Artesunate , Burkina Faso , Child, Preschool , Drug Therapy, Combination/methods , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Infant , Male , Methylene Blue/adverse effects , Microscopy , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Treatment Outcome
14.
BMC Genomics ; 16: 779, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26462916

ABSTRACT

BACKGROUND: The genome-wide association study (GWAS) techniques that have been used for genetic mapping in other organisms have not been successfully applied to mosquitoes, which have genetic characteristics of high nucleotide diversity, low linkage disequilibrium, and complex population stratification that render population-based GWAS essentially unfeasible at realistic sample size and marker density. METHODS: We designed a novel mapping strategy for the mosquito system that combines the power of linkage mapping with the resolution afforded by genetic association. We established founder colonies from West Africa, controlled for diversity, linkage disequilibrium and population stratification. Colonies were challenged by feeding on the infectious stage of the human malaria parasite, Plasmodium falciparum, mosquitoes were phenotyped for parasite load, and DNA pools for phenotypically similar mosquitoes were Illumina sequenced. Phenotype-genotype mapping was carried out in two stages, coarse and fine. RESULTS: In the first mapping stage, pooled sequences were analysed genome-wide for intervals displaying relativereduction in diversity between phenotype pools, and candidate genomic loci were identified for influence upon parasite infection levels. In the second mapping stage, focused genotyping of SNPs from the first mapping stage was carried out in unpooled individual mosquitoes and replicates. The second stage confirmed significant SNPs in a locus encoding two Toll-family proteins. RNAi-mediated gene silencing and infection challenge revealed that TOLL 11 protects mosquitoes against P. falciparum infection. CONCLUSIONS: We present an efficient and cost-effective method for genetic mapping using natural variation segregating in defined recent Anopheles founder colonies, and demonstrate its applicability for mapping in a complex non-model genome. This approach is a practical and preferred alternative to population-based GWAS for first-pass mapping of phenotypes in Anopheles. This design should facilitate mapping of other traits involved in physiology, epidemiology, and behaviour.


Subject(s)
Anopheles/genetics , Genome-Wide Association Study , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Toll-Like Receptors/genetics , Animals , Anopheles/parasitology , Chromosome Mapping , Genome, Insect , Genotype , Host-Parasite Interactions/genetics , Humans , Insect Vectors/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Phenotype , Plasmodium falciparum/pathogenicity , Polymorphism, Single Nucleotide
15.
Malar J ; 14: 527, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26714758

ABSTRACT

BACKGROUND: Insecticide-treated bed nets (ITNs) are now the main tool for malaria prevention in endemic areas. Synthetic pyrethroids are the only group of insecticides recommended by the World Health Organization for the use on ITNs. There are only few studies which have specifically investigated potential adverse effects of frequent exposure to ITNs in the vulnerable group of young infants and their mothers. METHODS: This study was nested into a large randomized controlled ITN effectiveness trial. Ninety newborns and their mothers were selected from the study population for participation. Together with their mothers they were protected with ITNs from birth (group A, n = 45) or from age 6 months (group B, n = 45) and followed up for 18 weeks (daily visits in the first 4 weeks, weekly visits thereafter). Potential side effects related to synthetic pyrethroids (deltamethrin) exposure were systematically investigated by trained field staff. The frequency and duration of respective symptoms was compared between the two study groups. RESULTS: A total of 180 participants (90 mothers and 90 infants) were followed up over the study period without any loss to follow up. There were no significant differences in the frequency and duration of side effects between the two study groups, except that the frequency of headache was significantly higher in group A compared to group B mothers (p = 0.01). CONCLUSIONS: The study provides further evidence for ITNs being sufficiently safe in children and even in newborns. The association with headache in mothers could be explained by them handling the ITNs more intensely or it could be a chance finding.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/epidemiology , Insecticide-Treated Bednets/adverse effects , Insecticides/adverse effects , Malaria/prevention & control , Mosquito Control/methods , Pyrethrins/adverse effects , Burkina Faso , Drug-Related Side Effects and Adverse Reactions/pathology , Follow-Up Studies , Humans , Infant , Infant, Newborn , Insecticides/pharmacology , Mothers , Pyrethrins/pharmacology
16.
Trop Med Int Health ; 19(6): 690-697, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24674355

ABSTRACT

OBJECTIVE: Sulphadoxine-pyrimethamine (SP) is widely used as intermittent preventive treatment (IPT) for malaria in pregnant women in Sub-Saharan Africa. There are reports of wide-spread SP resistance in countries where SP had once been used as a first-line treatment. It is unclear whether the development of SP resistance also affects countries where SP is mainly used in the context of IPT, as is the case in Burkina Faso. To assess the efficacy of SP-based IPT, we monitored the prevalence of SP conferring genetic mutations in the genes dhfr and dhps in Plasmodium falciparum populations in a rural area of Burkina Faso over a period of 13 years. METHODS: Molecular epidemiological study consisted of six consecutive cross-sectional surveys of rainy and dry seasons (2009-2012). Data from the rainy season in 2000 served as a baseline. Mutations in dhfr and dhps associated with SP resistance were analysed by pyrosequencing in 861 parasite-positive samples. RESULTS: The prevalence of the SP resistance conferring triple dhfr mutation 51I, 59R, 108N increased from 1.3% in the rainy season of 2000 to 35.3% in 2009, and 54.3% in 2011 (P ≤ 0.001). Comparing rainy and dry seasons, we observed an increasing step-like pattern with higher prevalence of the dhfr triple mutant in the respective dry season compared with the preceding rainy season. The proportion of the dhps 437Gly mutation in the rainy season of 2000 was 53.2% and subsequently increased to 77.6% in 2009 (P ≤ 0.001). CONCLUSION: The increase in molecular markers linked with SP resistance jeopardises the efficacy of IPTp and the planned IPTi interventions in Burkina Faso, calling for careful monitoring of genotypic resistance markers and in vivo validation of IPT efficacy.

17.
PLoS Biol ; 9(3): e1000600, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21408087

ABSTRACT

The three-gene APL1 locus encodes essential components of the mosquito immune defense against malaria parasites. APL1 was originally identified because it lies within a mapped QTL conferring the vector mosquito Anopheles gambiae natural resistance to the human malaria parasite, Plasmodium falciparum, and APL1 genes have subsequently been shown to be involved in defense against several species of Plasmodium. Here, we examine molecular population genetic variation at the APL1 gene cluster in spatially and temporally diverse West African collections of A. gambiae. The locus is extremely polymorphic, showing evidence of adaptive evolutionary maintenance of genetic variation. We hypothesize that this variability aids in defense against genetically diverse pathogens, including Plasmodium. Variation at APL1 is highly structured across geographic and temporal subpopulations. In particular, diversity is exceptionally high during the rainy season, when malaria transmission rates are at their peak. Much less allelic diversity is observed during the dry season when mosquito population sizes and malaria transmission rates are low. APL1 diversity is weakly stratified by the polymorphic 2La chromosomal inversion but is very strongly subdivided between the M and S "molecular forms." We find evidence that a recent selective sweep has occurred at the APL1 locus in M form mosquitoes only. The independently reported observation of a similar M-form restricted sweep at the Tep1 locus, whose product physically interacts with APL1C, suggests that epistatic selection may act on these two loci causing them to sweep coordinately.


Subject(s)
Anopheles/genetics , Insect Proteins/genetics , Insect Vectors/genetics , Plasmodium falciparum/immunology , Polymorphism, Genetic , Selection, Genetic , Adaptation, Biological , Animals , Anopheles/immunology , Anopheles/parasitology , Evolution, Molecular , Geography , Immunity, Innate/genetics , Insect Proteins/chemistry , Insect Vectors/parasitology , Seasons
18.
Am J Trop Med Hyg ; 110(2): 291-294, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38227963

ABSTRACT

Mass antibiotic distribution to preschool children resulted in alterations of the gut microbiome months after distribution. This individually randomized, placebo-controlled trial evaluated changes in the gut microbiome and resistome in children aged 8 days to 59 months after one dose of oral azithromycin in Burkina Faso. A total of 450 children were randomized in a 1:1 ratio to either placebo or azithromycin. Rectal samples were collected at baseline, 2 weeks, and 6 months after randomization and subjected to DNA deep sequencing. Gut microbiome diversity and normalized antimicrobial resistance determinants for different antibiotic classes were evaluated. Azithromycin decreased gut bacterial diversity (Shannon P < 0.0001; inverse Simpson P < 0.001) 2 weeks after treatment relative to placebo. Concurrently, the normalized abundance of macrolide resistance genetic determinants was 243-fold higher (95% CI: 76-fold to 776-fold, P < 0.0001). These alterations did not persist at 6 months, suggesting that disruptions were transient. Furthermore, we were unable to detect resistance changes in other antibiotic classes, indicating that co-resistance with a single course of azithromycin when treated at the individual level was unlikely.


Subject(s)
Azithromycin , Gastrointestinal Microbiome , Humans , Child, Preschool , Azithromycin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Macrolides , Drug Resistance, Bacterial/genetics
19.
Malar J ; 12: 27, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23339523

ABSTRACT

BACKGROUND: Malaria transmission was reported to have declined in some East African countries. However, a comparable trend has not been confirmed for West Africa. This study aims to assess the dynamics of parasite prevalence and malaria species distribution over time in an area of highly seasonal transmission in Burkina Faso. The aim was also to compare frequency of asymptomatic parasitaemia between wet and dry season by parasite density status and age group. METHODS: During the years 2009-2012, six cross-sectional studies were performed in the rural village Bourasso in the Nouna Health District in north-west Burkina Faso. In subsequent rainy and dry seasons blood samples were collected to assess the parasite prevalence, species, density and clinical parameters. In total, 1,767 children and adults were examined and compared to a baseline collected in 2000. RESULTS: The microscopical parasite prevalence (mainly P. falciparum) measured over the rainy seasons decreased significantly from 78.9% (2000) to 58.4%, 55.9% and 49.3%, respectively (2009-2011; p <0.001). The frequency of Plasmodium malariae infections (mono- and co-infections) decreased parallel to the overall parasite prevalence from 13.4% in 2000 to 2.1%, 4.1% and 4.7% in 2009-2011 (p <0.001). Comparing parasite-positive subjects from the rainy season versus dry season, the risk of fever was significantly reduced in the dry season adjusting for parasite density (grouped) and age group. CONCLUSIONS: The results of this study suggest a decline of malaria transmission over the rainy seasons between 2000 and 2009-2011 in the region of Nouna, Burkina Faso. The decreased transmission intensity was associated with lower prevalence of P. malariae infections (both mono-infections and co-infections). Asymptomatic parasitaemia was more frequent in the dry season even adjusting for parasite density and age group in a multivariate regression. Possible reasons for this observation include the existence of less pathogenic Plasmodium falciparum genotypes prevailing in the dry season, or the effect of a reduced incidence density during the dry season.


Subject(s)
Malaria/epidemiology , Parasitemia/epidemiology , Plasmodium/classification , Adolescent , Adult , Asymptomatic Diseases/epidemiology , Burkina Faso/epidemiology , Child , Child, Preschool , Female , Humans , Incidence , Malaria/pathology , Male , Parasitemia/pathology , Plasmodium/isolation & purification , Prevalence , Seasons , Young Adult
20.
Malar J ; 12: 188, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23742633

ABSTRACT

BACKGROUND: Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. METHODS: Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. RESULTS: Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. CONCLUSIONS: The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions.


Subject(s)
Clinical Laboratory Techniques/methods , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Parasitology/methods , Adolescent , Adult , Child , Child, Preschool , Endemic Diseases , Female , France , Humans , Infant , Malaria, Falciparum/epidemiology , Male , Mali , Microscopy/methods , Middle Aged , Polymerase Chain Reaction/methods , Predictive Value of Tests , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL