Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Mol Cell ; 68(1): 144-157.e5, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28965817

ABSTRACT

Within cells, soluble RNPs can switch states to coassemble and condense into liquid or solid bodies. Although these phase transitions have been reconstituted in vitro, for endogenous bodies the diversity of the components, the specificity of the interaction networks, and the function of the coassemblies remain to be characterized. Here, by developing a fluorescence-activated particle sorting (FAPS) method to purify cytosolic processing bodies (P-bodies) from human epithelial cells, we identified hundreds of proteins and thousands of mRNAs that structure a dense network of interactions, separating P-body from non-P-body RNPs. mRNAs segregating into P-bodies are translationally repressed, but not decayed, and this repression explains part of the poor genome-wide correlation between RNA and protein abundance. P-bodies condense thousands of mRNAs that strikingly encode regulatory processes. Thus, we uncovered how P-bodies, by condensing and segregating repressed mRNAs, provide a physical substrate for the coordinated regulation of posttranscriptional mRNA regulons.


Subject(s)
Gene Expression Regulation , Proteome/genetics , RNA, Messenger/genetics , Regulon , Ribonucleoproteins/genetics , Cell Fractionation , Cytoplasm/metabolism , Cytoplasmic Granules/chemistry , Cytoplasmic Granules/metabolism , Gene Ontology , HEK293 Cells , HeLa Cells , Humans , Molecular Sequence Annotation , Phase Transition , Protein Biosynthesis , Proteome/metabolism , RNA Stability , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism
2.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422817

ABSTRACT

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Subject(s)
DEAD-box RNA Helicases/genetics , Intellectual Disability/genetics , Mutation, Missense , Proto-Oncogene Proteins/genetics , RNA/genetics , Humans
3.
Hum Mol Genet ; 22(18): 3624-40, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23674521

ABSTRACT

Hypertension is a common hereditary syndrome with unclear pathogenesis. Chromogranin A (Chga), which catalyzes formation and cargo storage of regulated secretory granules in neuroendocrine cells, contributes to blood pressure homeostasis centrally and peripherally. Elevated Chga occurs in spontaneously hypertensive rat (SHR) adrenal glands and plasma, but central expression is unexplored. In this report, we measured SHR and Wistar-Kyoto rat (control) Chga expression in central and peripheral nervous systems, and found Chga protein to be decreased in the SHR brainstem, yet increased in the adrenal and the plasma. By re-sequencing, we systematically identified five promoter, two coding and one 3'-untranslated region (3'-UTR) polymorphism at the SHR (versus WKY or BN) Chga locus. Using HXB/BXH recombinant inbred (RI) strain linkage and correlations, we demonstrated genetic determination of Chga expression in SHR, including a cis-quantitative trait loci (QTLs) (i.e. at the Chga locus), and such expression influenced biochemical determinants of blood pressure, including a cascade of catecholamine biosynthetic enzymes, catecholamines themselves and steroids. Luciferase reporter assays demonstrated that the 3'-UTR polymorphism (which disrupts a microRNA miR-22 motif) and promoter polymorphisms altered gene expression consistent with the decline in SHR central Chga expression. Coding region polymorphisms did not account for changes in Chga expression or function. Thus, we hypothesized that the 3'-UTR and promoter mutations lead to dysregulation (diminution) of Chga in brainstem cardiovascular control nuclei, ultimately contributing to the pathogenesis of hypertension in SHR. Accordingly, we demonstrated that in vivo administration of miR-22 antagomir to SHR causes substantial (∼18 mmHg) reductions in blood pressure, opening a novel therapeutic avenue for hypertension.


Subject(s)
Chromogranin A/genetics , Chromogranin A/metabolism , Hypertension/genetics , MicroRNAs/genetics , Promoter Regions, Genetic , 3' Untranslated Regions , Adrenal Glands/metabolism , Animals , Blood Pressure/genetics , Brain Stem/metabolism , Cell Line, Tumor , Chromogranin A/blood , Chromogranin A/chemistry , DNA-Binding Proteins/genetics , Gene Expression Regulation , Genetic Linkage , Humans , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Male , MicroRNAs/metabolism , PC12 Cells , Polymorphism, Genetic , Protein Structure, Secondary , Quantitative Trait Loci , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sequence Alignment , Transcription, Genetic
4.
J Biol Chem ; 285(13): 10030-10043, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20061385

ABSTRACT

Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.


Subject(s)
Catecholamines/metabolism , Secretogranin II/metabolism , Secretory Vesicles/metabolism , Animals , COS Cells , Chlorocebus aethiops , Chromaffin Granules/metabolism , Gene Silencing , Genetic Vectors , Hydrogen-Ion Concentration , Neuroendocrine Cells/metabolism , PC12 Cells , RNA, Small Interfering/metabolism , Rats , Recombinant Fusion Proteins/metabolism
5.
Cell Mol Neurobiol ; 30(8): 1189-95, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21046450

ABSTRACT

Chromogranin A (CgA) is a soluble glycoprotein stored along with hormones and neuropeptides in secretory granules of endocrine cells. In the last four decades, intense efforts have been concentrated to characterize the structure and the biological function of CgA. Besides, CgA has been widely used as a diagnostic marker for tumors of endocrine origin, essential hypertension, various inflammatory diseases, and neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. CgA displays peculiar structural features, including numerous multibasic cleavage sites for prohormone convertases as well as a high proportion of acidic residues. Thus, it has been proposed that CgA represents a precursor of biologically active peptides, and a "granulogenic protein" that plays an important role as a chaperone for catecholamine storage in adrenal chromaffin cells. The widespread distribution of CgA throughout the neuroendocrine system prompted several groups to investigate the role of CgA in peptide hormone sorting to the regulated secretory pathway. This review summarizes the findings and theoretical concepts around the molecular machinery used by CgA to exert this putative intracellular function. Since CgA terminal regions exhibited strong sequence conservation through evolution, our work focused on the implication of these domains as potential functional determinants of CgA. Characterization of the molecular signals implicating CgA in the intracellular traffic of hormones represents a major biological issue that may contribute to unraveling the mechanisms defining the secretory competence of neuroendocrine cells.


Subject(s)
Chromogranin A/metabolism , Peptide Hormones/metabolism , Secretory Vesicles/metabolism , Animals , Humans , Models, Biological , Peptide Hormones/chemistry , Protein Structure, Quaternary , Protein Transport
6.
J Am Soc Nephrol ; 20(7): 1623-32, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19520754

ABSTRACT

Chromogranin A (CHGA), a protein released from secretory granules of chromaffin cells and sympathetic nerves, triggers endothelin-1 release from endothelial cells. CHGA polymorphisms associate with an increased risk for ESRD, but whether altered CHGA-endothelium interactions may explain this association is unknown. Here, CHGA led to the release of endothelin-1 and Weibel-Palade body exocytosis in cultured human umbilical vein endothelial cells. In addition, CHGA triggered secretion of endothelin-1 from glomerular endothelial cells and TGF-beta1 from mesangial cells cocultured with glomerular endothelial cells. In humans, plasma CHGA correlated positively with endothelin-1 and negatively with GFR. GFR was highly heritable in twin pairs, and common promoter haplotypes of CHGA predicted GFR. In patients with progressive hypertensive renal disease, a CHGA haplotype predicted rate of GFR decline. In conclusion, these data suggest that CHGA acts through the glomerular endothelium to regulate renal function.


Subject(s)
Chromogranin A/metabolism , Endothelium/metabolism , Exocytosis/physiology , Glomerular Filtration Rate/physiology , Kidney Glomerulus/metabolism , Weibel-Palade Bodies/metabolism , Animals , Cells, Cultured , Chromogranin A/genetics , Chromogranin A/pharmacology , Chronic Disease , Coculture Techniques , Dose-Response Relationship, Drug , Endothelins/metabolism , Endothelium/cytology , Endothelium/drug effects , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/pathology , Kidney Glomerulus/cytology , Kidney Glomerulus/drug effects , Mice , Polymorphism, Genetic/genetics , Risk Factors , Time Factors , Transforming Growth Factor beta1/metabolism
7.
Sci Adv ; 6(14): eaay9572, 2020 04.
Article in English | MEDLINE | ID: mdl-32270040

ABSTRACT

The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic ß-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.


Subject(s)
Cytoplasmic Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Ribosomes/metabolism , Animals , Biological Transport , Cryoelectron Microscopy , Cytoplasmic Vesicles/ultrastructure , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Molecular Imaging , Organ Specificity , Rats , Ribosomes/ultrastructure , Stress, Physiological
8.
Elife ; 82019 12 19.
Article in English | MEDLINE | ID: mdl-31855182

ABSTRACT

mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5' decay applies to optimally translated GC-rich mRNAs.


Subject(s)
Base Composition/genetics , RNA Stability/genetics , RNA, Messenger, Stored/genetics , RNA, Messenger/genetics , Gene Expression Regulation/genetics , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , Protein Biosynthesis/genetics , RNA, Messenger/chemistry , RNA, Messenger, Stored/chemistry , Transcriptome/genetics
9.
Biochemistry ; 47(27): 7167-78, 2008 Jul 08.
Article in English | MEDLINE | ID: mdl-18549247

ABSTRACT

Secretion of proteins and peptides from eukaryotic cells takes place by both constitutive and regulated pathways. Regulated secretion may involve interplay of proteins that are currently unknown. Recent studies suggest an important role of chromogranin A (CHGA) in the regulated secretory pathway in neuroendocrine cells, but the mechanism by which CHGA enters the regulated pathway, or even triggers the formation of the pathway, remains unclear. In this study, we used a transcriptome/proteome-wide approach, to discover binding partners for CHGA, by employing a phage display cDNA library method. Several proteins within or adjacent to the secretory pathway were initially detected as binding partners of recombinant human CHGA. We then focused on the trans-Golgi protein SCLIP (STMN3) and its stathmin paralog SCG10 (STMN2) for functional study. Co-immunoprecipitation experiments confirmed the interaction of each of these two proteins with CHGA in vitro. SCLIP and SCG10 were colocalized to the Golgi apparatus of chromaffin cells in vivo and shared localization with CHGA as it transited the Golgi. Downregulation of either SCLIP or SCG10 by synthetic siRNAs virtually abolished chromaffin cell secretion of a transfected CHGA-EAP chimera (expressing CHGA fused to an enzymatic reporter, and trafficked to the regulated pathway). SCLIP siRNA also decreased the level of secretion of endogenous CHGA and SCG2, as well as transfected human growth hormone, while SCG10 siRNA decreased the level of regulated secretion of endogenous CHGB. Moreover, a dominant negative mutant of SCG10 (Cys 22,Cys 24-->Ala 22,Ala 24) significantly blocked secretion of the transfected CHGA-EAP chimera. A decrease in the buoyant density of chromaffin granules was observed after downregulation of SCG10 by siRNA, suggesting participation of these stathmins in granule formation or maturation. We conclude that SCLIP and SCG10 interact with CHGA, share partial colocalization in the Golgi apparatus, and may be necessary for typical transmitter storage and release from chromaffin cells.


Subject(s)
Chromogranin A/metabolism , Membrane Proteins/metabolism , Neurosecretory Systems/metabolism , Stathmin/metabolism , trans-Golgi Network/metabolism , Animals , Chromaffin Cells/metabolism , Chromaffin Granules/metabolism , Chromogranin B/metabolism , Down-Regulation , Gene Silencing , Genes, Dominant , Growth Hormone/metabolism , Humans , Immunoprecipitation , Intracellular Space/metabolism , Mutant Proteins/metabolism , PC12 Cells , Protein Binding , Protein Transport , RNA, Small Interfering/metabolism , Rats , Recombinant Fusion Proteins/metabolism , Transfection
10.
Mol Cell Biol ; 25(15): 6760-71, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16024809

ABSTRACT

The yeast Saccharomyces cerevisiae contains a pair of paralogous iron-responsive transcription activators, Aft1 and Aft2. Aft1 activates the cell surface iron uptake systems in iron depletion, while the role of Aft2 remains poorly understood. This study compares the functions of Aft1 and Aft2 in regulating the transcription of genes involved in iron homeostasis, with reference to the presence/absence of the paralog. Cluster analysis of DNA microarray data identified the classes of genes regulated by Aft1 or Aft2, or both. Aft2 activates the transcription of genes involved in intracellular iron use in the absence of Aft1. Northern blot analyses, combined with chromatin immunoprecipitation experiments on selected genes from each class, demonstrated that Aft2 directly activates the genes SMF3 and MRS4 involved in mitochondrial and vacuolar iron homeostasis, while Aft1 does not. Computer analysis found different cis-regulatory elements for Aft1 and Aft2, and transcription analysis using variants of the FET3 promoter indicated that Aft1 is more specific for the canonical iron-responsive element TGCACCC than is Aft2. Finally, the absence of either Aft1 or Aft2 showed an iron-dependent increase in the amount of the remaining paralog. This may provide additional control of cellular iron homeostasis.


Subject(s)
Gene Expression Regulation, Fungal/physiology , Intracellular Fluid/metabolism , Iron/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Trans-Activators/physiology , Transcription Factors , Cation Transport Proteins/biosynthesis , Cation Transport Proteins/genetics , Ceruloplasmin/biosynthesis , Ceruloplasmin/genetics , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/genetics , Regulon/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/physiology , Transcription, Genetic/physiology
11.
Sci Rep ; 7(1): 5172, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28701771

ABSTRACT

Hormone secretion relies on secretory granules which store hormones in endocrine cells and release them upon cell stimulation. The molecular events leading to hormone sorting and secretory granule formation at the level of the TGN are still elusive. Our proteomic analysis of purified whole secretory granules or secretory granule membranes uncovered their association with the actomyosin components myosin 1b, actin and the actin nucleation complex Arp2/3. We found that myosin 1b controls the formation of secretory granules and the associated regulated secretion in both neuroendocrine cells and chromogranin A-expressing COS7 cells used as a simplified model of induced secretion. We show that F-actin is also involved in secretory granule biogenesis and that myosin 1b cooperates with Arp2/3 to recruit F-actin to the Golgi region where secretory granules bud. These results provide the first evidence that components of the actomyosin complex promote the biogenesis of secretory granules and thereby regulate hormone sorting and secretion.


Subject(s)
Actins/genetics , Myosin Type I/genetics , Secretory Vesicles/metabolism , Actins/metabolism , Animals , Biological Transport , COS Cells , Carrier Proteins , Chlorocebus aethiops , Golgi Apparatus/metabolism , Mice , Myosin Type I/metabolism , Neuroendocrine Cells/metabolism , Neurosecretory Systems/metabolism , PC12 Cells , Protein Binding , Rats
12.
Genetics ; 169(1): 107-22, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15489514

ABSTRACT

We screened a collection of 4847 haploid knockout strains (EUROSCARF collection) of Saccharomyces cerevisiae for iron uptake from the siderophore ferrioxamine B (FOB). A large number of mutants showed altered uptake activities, and a few turned yellow when grown on agar plates with added FOB, indicating increased intracellular accumulation of undissociated siderophores. A subset consisting of 197 knockouts with altered uptake was examined further for regulated activities that mediate cellular uptake of iron from other siderophores or from iron salts. Hierarchical clustering analysis grouped the data according to iron sources and according to mutant categories. In the first analysis, siderophores grouped together with the exception of enterobactin, which grouped with iron salts, suggesting a reductive pathway of iron uptake for this siderophore. Mutant groupings included three categories: (i) high-FOB uptake, high reductase, low-ferrous transport; (ii) isolated high- or low-FOB transport; and (iii) induction of all activities. Mutants with statistically altered uptake activities included genes encoding proteins with predominant localization in the secretory pathway, nucleus, and mitochondria. Measurements of different iron-uptake activities in the yeast knockout collection make possible distinctions between genes with general effects on iron metabolism and those with pathway-specific effects.


Subject(s)
Deferoxamine/metabolism , Ferric Compounds/metabolism , Genome, Fungal , Iron/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Siderophores/metabolism , Biological Transport , Cluster Analysis , Deferoxamine/pharmacokinetics , Enterobactin/metabolism , Enterobactin/pharmacokinetics , FMN Reductase/metabolism , Ferric Compounds/pharmacokinetics , Iron/pharmacokinetics , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacokinetics , Mutation/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Siderophores/pharmacokinetics
13.
Eur J Cancer ; 50(12): 2126-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24910418

ABSTRACT

AIM: In the present study, we have examined the presence of orexins and their receptors in prostate cancer (CaP) and investigated their effects on the apoptosis of prostate cancer cells. METHODS: We have localised the orexin type 1 and 2 receptors (OX1R and OX2R) and orexin A (OxA) in CaP sections of various grades and we have quantified tumour cells containing OX1R. Expression of OX1R was evaluated in the androgeno-dependent (AD) LNCaP and the androgeno-independent (AI) DU145 prostate cancer cells submitted or not to a neuroendocrine differentiation. The effects of orexins on the apoptosis and viability of DU145 cells were also investigated. RESULTS: OX1R is strongly expressed in carcinomatous foci exhibiting a neuroendocrine differentiation, and the number of OX1R-stained cancer cells increases with the grade of the CaP. In contrast, OX2R is only detected in scattered malignant cells in high grade CaP. OX1R is expressed in the AI DU145 cells but is undetectable in the LNCaP cells. Acquisition of a neuroendocrine phenotype by the DU145 cells is associated with an overexpression of OX1R. Orexins induce the apoptosis of DU145 cells submitted to a neuroendocrine differentiation. CONCLUSION: The present data indicate that OX1R-driven apoptosis is overexpressed in AI CaP exhibiting a neuroendocrine differentiation opening a gate for novel therapies for these aggressive cancers which are incurable until now.


Subject(s)
Neuroendocrine Cells , Orexin Receptors/physiology , Prostatic Neoplasms/metabolism , Apoptosis/physiology , Cell Proliferation , Cell Survival/physiology , Humans , Immunohistochemistry , Male , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Orexin Receptors/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/metabolism , Tumor Cells, Cultured
14.
Eur J Cancer ; 50(17): 3039-49, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25307750

ABSTRACT

AIM: In prostate cancer (PCa), neuroendocrine differentiation (NED) is commonly observed in relapsing, hormone therapy-resistant tumours after androgen deprivation. However, the molecular mechanisms involved in the NED of PCa cells remain poorly understood. In this study, we investigated the expression of the neuroendocrine secretory protein secretogranin II (SgII) in PCa, and its potential involvement in the progression of this cancer as a granulogenic factor promoting NED. METHODS: We have examined SgII immunoreactivity in 25 benign prostate hyperplasia and 32 PCa biopsies. In vitro experiments were performed to investigate the involvement of SgII in the neuroendocrine differentiation and the proliferation of PCa cell lines. RESULTS: We showed that immunoreactive SgII intensity correlates with tumour grade in PCa patients. Using the androgen-dependent lymph node cancer prostate cells (LNCaP) cells, we found that NED triggered by androgen deprivation is associated with the induction of SgII expression. In addition, forced expression of SgII in LNCaP cells implemented a regulated secretory pathway by triggering the formation of secretory granule-like structures competent for hormone storage and regulated release. Finally, we found that SgII promotes prostate cancer (CaP) cell proliferation. CONCLUSION: The present data show that SgII is highly expressed in advanced PCa and may contribute to the neuroendocrine differentiation by promoting the formation of secretory granules and the proliferation of PCa cells.


Subject(s)
Prostatic Neoplasms/metabolism , Secretogranin II/metabolism , Androgen Antagonists/pharmacology , Androgens/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Culture Media/pharmacology , Disease Progression , Humans , Male , Neuropeptide Y/pharmacology , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/pathology , Steroids/pharmacology
16.
Eur J Cancer ; 49(2): 511-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22863147

ABSTRACT

AIM: Accumulating data suggest that neuropeptides produced by neuroendocrine cells play a crucial role in the progression and aggressiveness of hormone refractory prostate cancer (CaP). In this study, we have investigated the presence and function of the neuropeptide 26RFa in CaP. METHODS: We have localised and quantified tumour cells containing 26RFa and its receptor, GPR103, in CaP sections of various grades. In vitro experiments were performed to investigate the effects of 26RFa on the migration, proliferation and neuroendocrine differentiation of the androgeno-independent (AI) prostate cancer cell line DU145. RESULTS: 26RFa and GPR103 are present in carcinomatous foci exhibiting a neuroendocrine differentiation, and the number of 26RFa and GPR103-immunoreactive cancer cells increases with the grade of CaP. 26RFa stimulated the migration of native or transdifferentiated AI DU145 cells, but had no effect on their proliferation. Furthermore, 26RFa induced the neuroendocrine differentiation of DU145 cells as assessed by the occurrence of neurite-like extensions and the increase of the expression of the neuroendocrine marker chromogranin A. CONCLUSION: The present data indicate that 26RFa may participate to the development of CaP at the AI state by promoting the neuroendocrine differentiation and the migration of cancer cells via autocrine/paracrine mechanisms.


Subject(s)
Neuropeptides/biosynthesis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Androgens/metabolism , Cell Differentiation/physiology , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Movement/physiology , Disease Progression , Humans , Immunohistochemistry , Male , Neoplasms, Hormone-Dependent/metabolism , Neoplasms, Hormone-Dependent/pathology , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Receptors, G-Protein-Coupled/biosynthesis
17.
J Clin Endocrinol Metab ; 98(11): 4346-54, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24001749

ABSTRACT

CONTEXT: A number of incidentally discovered pheochromocytomas are not associated with hypertension. The characteristics of normotensive incidentally discovered pheochromocytomas (NIPs) are poorly known. OBJECTIVE: The purpose of this work was to assess the clinical, hormonal, histological, and molecular features of NIPs. DESIGN: This was a retrospective cohort recruited from 2001 to 2011 in 2 tertiary care medical departments. PATIENTS AND METHODS: Clinical, biological, and radiological investigations performed in 96 consecutive patients with sporadic unilateral pheochromocytomas were examined; 47 patients had overt pheochromocytomas responsible for hypertension. Among the patients with incidental pheochromocytomas, 28 had hypertension and 21 were normotensive (NIPs). A total of 62 tumors were examined to determine the Pheochromocytoma of the Adrenal Gland Scale Score, and 29 were studied for the expression of 16 genes involved in chromaffin cell function. RESULTS: Tumor size and metaiodobenzylguanidine (MIBG) scintigraphy results were similar for hypertensive pheochromocytomas (HPs) and NIPs. Patients with NIPs displayed reduced summed levels of urinary catecholamines and metanephrines and, more specifically, reduced levels of adrenaline and metadrenaline compared with those of patients with HPs (P < .001). Urinary metanephrines had 98% diagnostic sensitivity in patients with HPs and only 75% in patients with NIPs (P < .01). Tumor diameter positively correlated with the total amount of urinary concentrations of metanephrines in patients with HPs (P < .001) but not in patients with NIPs. NIPs displayed global decreased chromaffin gene expression (reaching significance for 5 of them) and 2 corresponding proteins (phenylethanolamine N-methyltransferase and secretogranin II) and a significant increase in the cellularity, mitotic activity, and presence of atypical mitosis (P < .05). CONCLUSIONS: NIPs differ from pheochromocytomas responsible for hypertension and display features of altered chromaffin differentiation. These tumors may be misdiagnosed with the use of the usual biological diagnostic tools.


Subject(s)
Adrenal Gland Neoplasms , Chromaffin Cells/diagnostic imaging , Chromaffin Cells/physiology , Gene Expression Regulation, Neoplastic , Pheochromocytoma , 3-Iodobenzylguanidine , Adrenal Gland Neoplasms/diagnostic imaging , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/metabolism , Chromaffin Cells/pathology , Female , Humans , Hypertension/diagnostic imaging , Hypertension/genetics , Hypertension/metabolism , Incidental Findings , Male , Middle Aged , Pheochromocytoma/diagnostic imaging , Pheochromocytoma/genetics , Pheochromocytoma/metabolism , Radionuclide Imaging , Radiopharmaceuticals , Retrospective Studies , Transcriptome
18.
Endocrinology ; 153(9): 4444-56, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22851679

ABSTRACT

Chromogranins are a family of acidic glycoproteins that play an active role in hormone and neuropeptide secretion through their crucial role in secretory granule biogenesis in neuroendocrine cells. However, the molecular mechanisms underlying their granulogenic activity are still not fully understood. Because we previously demonstrated that the expression of the major component of secretory granules, chromogranin A (CgA), is able to induce the formation of secretory granules in nonendocrine COS-7 cells, we decided to use this model to dissect the mechanisms triggered by CgA leading to the biogenesis and trafficking of such granules. Using quantitative live cell imaging, we first show that CgA-induced organelles exhibit a Ca(2+)-dependent trafficking, in contrast to native vesicle stomatitis virus G protein-containing constitutive vesicles. To identify the proteins that confer such properties to the newly formed granules, we developed CgA-stably-expressing COS-7 cells, purified their CgA-containing granules by subcellular fractionation, and analyzed the granule proteome by liquid chromatography-tandem mass spectrometry. This analysis revealed the association of several cytosolic proteins to the granule membrane, including GTPases, cytoskeleton-based molecular motors, and other proteins with actin- and/or Ca(2+)-binding properties. Furthermore, disruption of cytoskeleton affects not only the distribution and the transport but also the Ca(2+)-evoked exocytosis of the CgA-containing granules, indicating that these granules interact with microtubules and cortical actin for the regulated release of their content. These data demonstrate for the first time that the neuroendocrine factor CgA induces the recruitment of cytoskeleton-, GTP-, and Ca(2+)-binding proteins in constitutively secreting COS-7 cells to generate vesicles endowed with typical dynamics and exocytotic properties of neuroendocrine secretory granules.


Subject(s)
Actins/metabolism , Calcium/metabolism , Chromogranin A/pharmacology , Secretory Vesicles/drug effects , Secretory Vesicles/metabolism , Actins/ultrastructure , Animals , Blotting, Western , COS Cells , Chlorocebus aethiops , Electrophoresis, Polyacrylamide Gel , Exocytosis/drug effects , Microscopy, Electron , Microscopy, Fluorescence , Secretory Vesicles/ultrastructure , Tandem Mass Spectrometry
19.
Circ Cardiovasc Genet ; 4(4): 381-9, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21558123

ABSTRACT

BACKGROUND: The catecholamine release-inhibitor catestatin and its precursor chromogranin A (CHGA) may constitute "intermediate phenotypes" in the analysis of genetic risk for cardiovascular disease such as hypertension. Previously, the vacuolar H(+)-ATPase subunit gene ATP6V0A1 was found within the confidence interval for linkage with catestatin secretion in a genome-wide study, and its 3'-UTR polymorphism T+3246C (rs938671) was associated with both catestatin processing from CHGA and population blood pressure. We explored the molecular mechanism of this effect by experiments with transfected chimeric photoproteins in chromaffin cells. METHODS AND RESULTS: Placing the ATP6V0A1 3'-UTR downstream of a luciferase reporter, we found that the C (variant) allele decreased overall gene expression. The 3'-UTR effect was verified by coupled in vitro transcription/translation of the entire/intact human ATP6V0A1 mRNA. Chromaffin granule pH, monitored by fluorescence of CHGA/EGFP chimera during vesicular H(+)-ATPase inhibition by bafilomycin A1, was more easily perturbed during coexpression of the ATP6V0A1 3'-UTR C-allele than the T-allele. After bafilomycin A1 treatment, the ratio of CHGA precursor to its catestatin fragments in PC12 cells was substantially diminished, though the qualitative composition of such fragments was not affected (on immunoblot or matrix-assisted laser desorption ionization (MALDI) mass spectrometry). Bafilomycin A1 treatment also decreased exocytotic secretion from the regulated pathway, monitored by a CHGA chimera tagged with embryonic alkaline phosphatase. 3'-UTR T+3246C created a binding motif for micro-RNA hsa-miR-637; cotransfection of hsa-miR-637 precursor or antagomir/inhibitor oligonucleotides yielded the predicted changes in expression of luciferase reporter/ATP6V0A1-3'-UTR plasmids varying at T+3246C. CONCLUSIONS: The results suggest a series of events whereby ATP6V0A1 3'-UTR variant T+3246C functioned: ATP6V0A1 expression probably was affected through differential micro-RNA effects, altering vacuolar pH and consequently CHGA processing and exocytotic secretion.


Subject(s)
3' Untranslated Regions/genetics , Chromogranin A/metabolism , Genetic Variation , Hypertension/genetics , MicroRNAs , Vacuolar Proton-Translocating ATPases/genetics , Binding Sites , Exocytosis , Humans
20.
Endocrinology ; 150(8): 3547-57, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19372204

ABSTRACT

Chromogranin A (CgA), the major soluble protein in chromaffin granules, is proteolytically processed to generate biologically active peptides including the catecholamine release inhibitory peptide catestatin. Here we sought to determine whether cysteine protease cathepsin L (CTSL), a novel enzyme for proteolytic processing of neuropeptides, acts like the well-established serine proteases [prohormone convertase (PC)1/3 or PC2] to generate catestatin by proteolytic processing of CgA. We found that endogenous CTSL colocalizes with CgA in the secretory vesicles of primary rat chromaffin cells. Transfection of PC12 cells with an expression plasmid encoding CTSL directed expression of CTSL toward secretory vesicles. Deconvolution fluorescence microscopy suggested greater colocalization of CTSL with CgA than the lysosomal marker LGP110. The overexpression of CTSL in PC12 cells caused cleavage of full-length CgA. CTSL also cleaved CgA in vitro, in time- and dose-dependent fashion, and specificity of the process was documented through E64 (thiol reagent) inhibition. Mass spectrometry on CTSL-digested recombinant CgA identified a catestatin-region peptide, corresponding to CgA(360-373). The pool of peptides generated from the CTSL cleavage of CgA inhibited nicotine-induced catecholamine secretion from PC12 cells. CTSL processing in the catestatin region was diminished by naturally occurring catestatin variants, especially Pro370Leu and Gly364Ser. Among the CTSL-generated peptides, a subset matched those found in the catestatin region in vivo. These findings indicate that CgA can be a substrate for the cysteine protease CTSL both in vitro and in cella, and their colocalization within chromaffin granules in cella suggests the likelihood of an enzyme/substrate relationship in vivo.


Subject(s)
Cathepsins/metabolism , Chromaffin Cells/metabolism , Chromogranin A/metabolism , Cysteine Endopeptidases/metabolism , Animals , Catecholamines/metabolism , Cathepsin L , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Female , Fluorescent Antibody Technique , Humans , Immunoblotting , PC12 Cells , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL