Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Ann Clin Transl Neurol ; 11(4): 842-855, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366285

ABSTRACT

Four sphingosine 1-phosphate (S1P) receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are approved by the US Food and Drug Administration for the treatment of multiple sclerosis. This review summarizes efficacy and safety data on these S1P receptor modulators, with an emphasis on similarities and differences. Efficacy data from the pivotal clinical trials are generally similar for the four agents. However, because no head-to-head clinical studies were conducted, direct efficacy comparisons cannot be made. Based on the adverse event profile of S1P receptor modulators, continued and regular monitoring of patients during treatment will be instructive. Notably, the authors recommend paying attention to the cardiac monitoring guidelines for these drugs, and when indicated screening for macular edema and cutaneous malignancies before starting treatment. To obtain the best outcome, clinicians should choose the drug based on disease type, history, and concomitant medications for each patient. Real-world data should help to determine whether there are meaningful differences in efficacy or side effects between these agents.


Subject(s)
Multiple Sclerosis , Sphingosine 1 Phosphate Receptor Modulators , United States , Humans , Multiple Sclerosis/drug therapy , Sphingosine 1 Phosphate Receptor Modulators/adverse effects , Sphingosine-1-Phosphate Receptors/therapeutic use , Fingolimod Hydrochloride/adverse effects , Administration, Oral
3.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200243, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38630950

ABSTRACT

Acute disseminated encephalomyelitis (ADEM) is one characteristic manifestation of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). A previously healthy man presented with retro-orbital headache and urinary retention 14 days after Tdap vaccination. Brain and spine MRI suggested a CNS demyelinating process. Despite treatment with IV steroids, he deteriorated, manifesting hemiparesis and later impaired consciousness, requiring intubation. A repeat brain MRI demonstrated new bilateral supratentorial lesions associated with venous sinus thrombosis, hemorrhage, and midline shift. Anti-MOG antibody was present at a high titer. CSF IL-6 protein was >2,000 times above the upper limits of normal. He improved after plasma exchange, then began monthly treatment alone with anti-IL-6 receptor antibody, tocilizumab, and has remained stable. This case highlights how adult-onset MOGAD, like childhood ADEM, can rapidly become life-threatening. The markedly elevated CSF IL-6 observed here supports consideration for evaluating CSF cytokines more broadly in patients with acute MOGAD.


Subject(s)
Encephalomyelitis, Acute Disseminated , Male , Adult , Humans , Child , Interleukin-6/metabolism , Myelin-Oligodendrocyte Glycoprotein , Brain/pathology , Cytokines/metabolism
4.
Lancet Neurol ; 23(6): 588-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760098

ABSTRACT

BACKGROUND: Inebilizumab, an anti-CD19 B-cell-depleting antibody, demonstrated safety and efficacy in neuromyelitis optica spectrum disorder in the randomised controlled period of the N-MOmentum trial. Here, end-of-study data, including the randomised controlled period and open-label extension period, are reported. METHODS: In the double-blind, randomised, placebo-controlled, phase 2/3 N-MOmentum trial, adults aged 18 years and older with an neuromyelitis optica spectrum disorder diagnosis, Expanded Disability Status Scale score of 8·0 or less, and history of either at least one acute inflammatory attack requiring rescue therapy in the past year or two attacks requiring rescue therapy in the past 2 years, were recruited from 81 outpatient specialty clinics or hospitals in 24 countries. Eligible participants were randomly assigned (3:1), using a central interactive voice system or interactive web response system, and a permuted block randomisation scheme (block size of 4), to receive intravenous inebilizumab (300 mg) or identical placebo on days 1 and 15 of the randomised period, which lasted up to 197 days. Participants and all study staff were masked to treatment assignment. The primary endpoint of the randomised period of the trial was time to onset of adjudicated neuromyelitis optica spectrum disorder attack on or before day 197. Participants in the randomised controlled period who had an adjudicated attack, completed 197 days in the study, or were in the randomised controlled period when enrolment stopped, could voluntarily enter the open-label period. In the open-label period, participants either initiated inebilizumab if assigned placebo (receiving 300 mg on days 1 and 15 of the open-label period) or continued treatment if assigned inebilizumab (receiving 300 mg on day 1 and placebo on day 15, to maintain B-cell depletion and masking of the randomised controlled period). All participants subsequently received inebilizumab 300 mg every 6 months for a minimum of 2 years. The end-of-study analysis endpoints were time to adjudicated attack and annualised attack rate (assessed in all participants who received inebilizumab at any point during the randomised controlled period or open-label period [any inebilizumab population] and the aquaporin-4 [AQP4]-IgG seropositive subgroup [any inebilizumab-AQP4-IgG seropositive population]) and safety outcomes (in all participants who were exposed to inebilizumab, analysed as-treated). This study is registered with ClinicalTrials.gov, NCT02200770, and is now complete. FINDINGS: Between Jan 6, 2015, and Sept 24, 2018, 467 individuals were screened, 231 were randomly assigned, and 230 received at least one dose of inebilizumab (n=174) or placebo (n=56). Between May 19, 2015, and Nov 8, 2018, 165 (95%) of 174 participants in the inebilizumab group and 51 (91%) of 56 in the placebo group entered the open-label period (mean age 42·9 years [SD 12·4], 197 [91%] of 216 were female, 19 [9%] were male, 115 [53%] were White, 45 [21%] were Asian, 19 [9%] were American Indian or Alaskan Native, and 19 [9%] were Black or African American). As of data cutoff for this end of study analysis (Dec 18, 2020; median exposure 1178 days [IQR 856-1538], total exposure of 730 person-years) 225 participants formed the any inebilizumab population, and 208 (92%) participants were AQP4-IgG seropositive. Overall, 63 adjudicated neuromyelitis optica spectrum disorder attacks occurred in 47 (21%) of 225 treated participants (60 attacks occurred in 44 [21%] of 208 in the AQP4-IgG seropositive subgroup); 40 (63%) of 63 attacks occurred in 34 (15%) of 225 treated participants during the first year of treatment. Of individuals who had an adjudicated attack while receiving inebilizumab, 36 (77%) of 47 were subsequently attack-free at the end of 4 years. Annualised attack rates decreased year-on-year, with end-of-study adjusted annualised attack rates being similar in the any inebilizumab-AQP4-IgG seropositive subgroup (0·097 [95% CI 0·070-0·14]) and any inebilizumab populations (0·092 [0·067-0·13]). Overall, 208 (92%) of 225 participants who received any inebilizumab had at least one treatment-emergent adverse event, the most frequent of which were urinary tract infection (59 [26%]), nasopharyngitis (47 [21%]), and arthralgia (39 [17%]). Infection rates did not increase over 4 years. Three (1%) of 225 participants in the any inebilizumab population died during the open-label period (one each due to a CNS event of unknown cause and pneumonia, respiratory insufficiency resulting from an neuromyelitis optica spectrum disorder attack and viral pneumonia related to COVID-19), all of which were deemed to be unrelated to treatment. INTERPRETATION: Data from the end-of-study analysis of the N-MOmentum trial showed continued and sustained clinical benefits of long-term inebilizumab treatment in individuals with neuromyelitis optica spectrum disorder, which supports the role of inebilizumab as a CD19+ B-cell-depleting therapy in neuromyelitis optica spectrum disorder. FUNDING: MedImmune and Viela Bio/Horizon Therapeutics, now part of Amgen.


Subject(s)
Antibodies, Monoclonal, Humanized , Neuromyelitis Optica , Humans , Neuromyelitis Optica/drug therapy , Female , Adult , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Middle Aged , Treatment Outcome , Aged , Young Adult
5.
Nat Commun ; 15(1): 4297, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769309

ABSTRACT

The multifaceted nature of multiple sclerosis requires quantitative biomarkers that can provide insights related to diverse physiological pathways. To this end, proteomic analysis of deeply-phenotyped serum samples, biological pathway modeling, and network analysis were performed to elucidate inflammatory and neurodegenerative processes, identifying sensitive biomarkers of multiple sclerosis disease activity. Here, we evaluated the concentrations of > 1400 serum proteins in 630 samples from three multiple sclerosis cohorts for association with clinical and radiographic new disease activity. Twenty proteins were associated with increased clinical and radiographic multiple sclerosis disease activity for inclusion in a custom assay panel. Serum neurofilament light chain showed the strongest univariate correlation with gadolinium lesion activity, clinical relapse status, and annualized relapse rate. Multivariate modeling outperformed univariate for all endpoints. A comprehensive biomarker panel including the twenty proteins identified in this study could serve to characterize disease activity for a patient with multiple sclerosis.


Subject(s)
Biomarkers , Multiple Sclerosis , Proteomics , Humans , Biomarkers/blood , Multiple Sclerosis/blood , Multiple Sclerosis/diagnostic imaging , Female , Male , Adult , Proteomics/methods , Middle Aged , Neurofilament Proteins/blood , Blood Proteins/analysis , Magnetic Resonance Imaging/methods , Inflammation/blood , Cohort Studies
6.
Cell Rep Med ; 5(4): 101490, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574736

ABSTRACT

While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.


Subject(s)
Multiple Sclerosis , Animals , Humans , Multiple Sclerosis/pathology , Retina/pathology , Neurons/pathology , Models, Animal , Atrophy/pathology
7.
Neurology ; 102(9): e209357, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38648580

ABSTRACT

BACKGROUND AND OBJECTIVES: Serum neurofilament light chain (sNfL) levels correlate with multiple sclerosis (MS) disease activity, but the dynamics of this correlation are unknown. We evaluated the relationship between sNfL levels and radiologic MS disease activity through monthly assessments during the 24-week natalizumab treatment interruption period in RESTORE (NCT01071083). METHODS: In the RESTORE trial, participants with relapsing forms of MS who had received natalizumab for ≥12 months were randomized to either continue or stop natalizumab and followed with MRI and blood draws every 4 weeks to week 28 and again at week 52 The sNfL was measured, and its dynamics were correlated with the development of gadolinium-enhancing (Gd+) lesions. Log-linear trend in sNfL levels were modeled longitudinally using generalized estimating equations with robust variance estimator from baseline to week 28. RESULTS: Of 175 patients enrolled in RESTORE, 166 had serum samples for analysis. Participants with Gd+ lesions were younger (37.7 vs 43.1, p = 0.001) and had lower Expanded Disability Status Scale scores at baseline (2.7 vs 3.4, p = 0.017) than participants without Gd+ lesions. sNfL levels increased in participants with Gd+ lesions (n = 65) compared with those without (n = 101, mean change from baseline to maximum sNfL value, 12.1 vs 3.2 pg/mL, respectively; p = 0.003). As the number of Gd+ lesions increased, peak median sNfL change also increased by 1.4, 3.0, 4.3, and 19.6 pg/mL in the Gd+ lesion groups of 1 (n = 12), 2-3 (n = 18), 4-9 (n = 21), and ≥10 (n = 14) lesions, respectively. However, 46 of 65 (71%) participants with Gd+ lesions did not increase above the 95th percentile threshold of the group without Gd+ lesions. The initial increase of sNfL typically trailed the first observation of Gd+ lesions, and the peak increase in sNfL was a median [interquartile range] of 8 [0, 12] weeks after the first appearance of the Gd+ lesion. DISCUSSION: Although sNfL correlated with the presence of Gd+ lesions, most participants with Gd+ lesions did not have elevations in sNfL levels. These observations have implications for the use and interpretation of sNfL as a biomarker for monitoring MS disease activity in controlled trials and clinical practice.


Subject(s)
Magnetic Resonance Imaging , Natalizumab , Neurofilament Proteins , Humans , Neurofilament Proteins/blood , Female , Male , Adult , Middle Aged , Natalizumab/therapeutic use , Biomarkers/blood , Gadolinium , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Disease Progression , Immunologic Factors/therapeutic use , Immunologic Factors/blood , Multiple Sclerosis/blood , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Brain/diagnostic imaging , Brain/pathology , Disability Evaluation , Time Factors
8.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924428

ABSTRACT

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Subject(s)
Autoantibodies , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Vitamin B 12 Deficiency/immunology , Vitamin B 12/blood , Autoantibodies/blood , Autoantibodies/immunology , Female , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Middle Aged , Autoimmune Diseases/immunology , Autoimmune Diseases/blood , Blood-Brain Barrier/metabolism , Male
9.
Nat Med ; 30(5): 1300-1308, 2024 May.
Article in English | MEDLINE | ID: mdl-38641750

ABSTRACT

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.


Subject(s)
Autoantibodies , Multiple Sclerosis , Neurofilament Proteins , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , Autoantibodies/blood , Autoantibodies/immunology , Neurofilament Proteins/blood , Neurofilament Proteins/immunology , Biomarkers/blood , Cohort Studies , Female , Male , Adult , Middle Aged
10.
Front Immunol ; 14: 1290666, 2023.
Article in English | MEDLINE | ID: mdl-38162670

ABSTRACT

Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates by suppressing peripheral immune cells but have limited efficacy in progressive forms of the disease where cells in the central nervous system play a critical role. To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab, ocrelizumab, ofatumumab, and teriflunomide are either limited to the periphery or insufficiently studied to confirm direct central nervous system effects in participants with multiple sclerosis. In contrast, cladribine and sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are central nervous system-penetrant and could have beneficial direct central nervous system properties.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Immunosuppressive Agents , Cladribine
11.
Front Neurol ; 14: 1326738, 2023.
Article in English | MEDLINE | ID: mdl-38145128

ABSTRACT

Background: The HLA-DRB1 gene in the major histocompatibility complex (MHC) region in chromosome 6p21 is the strongest genetic factor identified as influencing multiple sclerosis (MS) susceptibility. DNA methylation changes associated with MS have been consistently detected at the MHC region. However, understanding the full scope of epigenetic regulations of the MHC remains incomplete, due in part to the limited coverage of this region by standard whole genome bisulfite sequencing or array-based methods. Methods: We developed and validated an MHC capture protocol coupled with bisulfite sequencing and conducted a comprehensive analysis of the MHC methylation landscape in blood samples from 147 treatment naïve MS study participants and 129 healthy controls. Results: We identified 132 differentially methylated region (DMRs) within MHC region associated with disease status. The DMRs overlapped with established MS risk loci. Integration of the MHC methylome with human leukocyte antigen (HLA) genetic data indicate that the methylation changes are significantly associated with HLA genotypes. Using DNA methylation quantitative trait loci (mQTL) mapping and the causal inference test (CIT), we identified 643 cis-mQTL-DMRs paired associations, including 71 DMRs possibly mediating causal relationships between 55 single nucleotide polymorphisms (SNPs) and MS risk. Results: The results describe MS-associated methylation changes in MHC region and highlight the association between HLA genotypes and methylation changes. Results from the mQTL and CIT analyses provide evidence linking MHC region variations, methylation changes, and disease risk for MS.

SELECTION OF CITATIONS
SEARCH DETAIL