Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(43): e2208121119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36269861

ABSTRACT

Secondary organic aerosol (SOA) plays a critical, yet uncertain, role in air quality and climate. Once formed, SOA is transported throughout the atmosphere and is exposed to solar UV light. Information on the viscosity of SOA, and how it may change with solar UV exposure, is needed to accurately predict air quality and climate. However, the effect of solar UV radiation on the viscosity of SOA and the associated implications for air quality and climate predictions is largely unknown. Here, we report the viscosity of SOA after exposure to UV radiation, equivalent to a UV exposure of 6 to 14 d at midlatitudes in summer. Surprisingly, UV-aging led to as much as five orders of magnitude increase in viscosity compared to unirradiated SOA. This increase in viscosity can be rationalized in part by an increase in molecular mass and oxidation of organic molecules constituting the SOA material, as determined by high-resolution mass spectrometry. We demonstrate that UV-aging can lead to an increased abundance of aerosols in the atmosphere in a glassy solid state. Therefore, UV-aging could represent an unrecognized source of nuclei for ice clouds in the atmosphere, with important implications for Earth's energy budget. We also show that UV-aging increases the mixing times within SOA particles by up to five orders of magnitude throughout the troposphere with important implications for predicting the growth, evaporation, and size distribution of SOA, and hence, air pollution and climate.


Subject(s)
Air Pollutants , Air Pollution , Sunlight , Ice , Aerosols/chemistry , Atmosphere/chemistry
2.
Environ Sci Technol ; 55(23): 15637-15645, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34813317

ABSTRACT

Secondary organic aerosol formation via condensation of organic vapors onto existing aerosol transforms the chemical composition and size distribution of ambient aerosol, with implications for air quality and Earth's radiative balance. Gas-to-particle conversion is generally thought to occur on a continuum between equilibrium-driven partitioning of semivolatile molecules to the pre-existing mass size distribution and kinetic-driven condensation of low volatility molecules to the pre-existing surface area size distribution. However, we offer experimental evidence in contrast to this framework. When catechol is sequentially oxidized by O3 and NO3 in the presence of (NH4)2SO4 seed particles with a single size mode, we observe a bimodal organic aerosol mass size distribution with two size modes of distinct chemical composition with nitrocatechol from NO3 oxidation preferentially condensing onto the large end of the pre-existing size distribution (∼750 nm). A size-resolved chemistry and microphysics model reproduces the evolution of the two distinct organic aerosol size modes─heterogeneous nucleation to an independent, nitrocatechol-rich aerosol phase.


Subject(s)
Air Pollutants , Ozone , Aerosols/analysis , Air Pollutants/analysis , Catechols , Nitrates , Particle Size
3.
Inorg Chem ; 57(16): 9611-9621, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29461816

ABSTRACT

Known stable [Cr(bpy)2(Ph)2](BPh4) complexes undergo reductive elimination of biphenyl with visible-light photolysis using household incandescent or compact fluorescent light bulbs. A series of [Cr(R-bpy)2(Ar)2](X) complexes (R = H or CMe3; Ar = Ph, C6H4-CMe3, or C6H4-OMe; X = I, BPh4, or PF6) were prepared, and the effect of varying the bipyridine and aryl ligands on the UV-visible spectra and electrochemistry of the chromium(III) complexes was investigated. Photolysis of a mixture of two different bis(aryl) complexes gave only the homocoupled biaryl products by 1H NMR and gas chromatography/mass spectrometry analysis. The initial product of photoinduced reductive elimination of [Cr(bpy)2(Ar)2](PF6) was trapped with bipyridine to generate [Cr(bpy)3](PF6) and with benzoyl peroxide to form [Cr(bpy)2(O2CPh)2](PF6). The latter chromium(III) bis(benzoate) complex was also synthesized by the addition of bipyridine and PhCO2H to Cp2Cr, followed by air oxidation. The neutral Cr(bpy)(S2CNMe2)Ph2 complex also generated biphenyl upon visible-light photolysis. While the treatment of Cr(tBu-bpy)(dpm)Cl2 [dpm = (OCtBu)2CH] with AgO2CPh gave trans-Cr(tBu-bpy)(dpm)(O2CPh)2, reaction of the dichloro precursor with PhMgCl produced anionic [Cr(tBu-bpy)Ph3]- with [Mg(dpm)(THF)4]+ as the countercation, with both complexes characterized by single-crystal X-ray diffraction. Protonolysis of Cr(bpy)Ph3(THF) with 8-hydroxyquinoline produced Cr(bpy)(quin)Ph2, which generated biphenyl under visible-light photolysis, and the initial product of reductive elimination was trapped by bipyridine or benzoyl peroxide. A related Cr(bpy)(quin)2 complex was synthesized by protonolysis of Cr(bpy)[N(SiMe3)2]2 and characterized by single-crystal X-ray diffraction.

4.
ACS Earth Space Chem ; 7(5): 1060-1071, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37223424

ABSTRACT

Plant stress alters emissions of volatile organic compounds. However, little is known about how this could influence climate-relevant properties of secondary organic aerosol (SOA), particularly from complex mixtures such as real plant emissions. In this study, the chemical composition and viscosity were examined for SOA generated from real healthy and aphid-stressed Canary Island pine (Pinus canariensis) trees, which are commonly used for landscaping in Southern California. Healthy Canary Island pine (HCIP) and stressed Canary Island pine (SCIP) aerosols were generated in a 5 m3 environmental chamber at 35-84% relative humidity and room temperature via OH-initiated oxidation. Viscosities of the collected particles were measured using an offline poke-flow method, after conditioning the particles in a humidified air flow. SCIP particles were consistently more viscous than HCIP particles. The largest differences in particle viscosity were observed in particles conditioned at 50% relative humidity where the viscosity of SCIP particles was an order of magnitude larger than that of HCIP particles. The increased viscosity for the aphid-stressed pine tree SOA was attributed to the increased fraction of sesquiterpenes in the emission profile. The real pine SOA particles, both healthy and aphid-stressed, were more viscous than α-pinene SOA particles, demonstrating the limitation of using a single monoterpene as a model compound to predict the physicochemical properties of real biogenic SOA. However, synthetic mixtures composed of only a few major compounds present in emissions (<10 compounds) can reproduce the viscosities of SOA observed from the more complex real plant emissions.

SELECTION OF CITATIONS
SEARCH DETAIL