Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 629(8013): 937-944, 2024 May.
Article in English | MEDLINE | ID: mdl-38720067

ABSTRACT

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.


Subject(s)
Adjuvants, Immunologic , Metabolic Engineering , Saccharomyces cerevisiae , Saponins , Adjuvants, Immunologic/biosynthesis , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/metabolism , Biosynthetic Pathways/genetics , Drug Design , Enzymes/genetics , Enzymes/metabolism , Metabolic Engineering/methods , Plants/enzymology , Plants/genetics , Plants/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saponins/biosynthesis , Saponins/chemistry , Saponins/genetics , Saponins/metabolism , Structure-Activity Relationship
2.
Proc Natl Acad Sci U S A ; 108(52): E1475-83, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22123957

ABSTRACT

There are currently few treatment options for pulmonary fibrosis. Innovations may come from a better understanding of the cellular origin of the characteristic fibrotic lesions. We have analyzed normal and fibrotic mouse and human lungs by confocal microscopy to define stromal cell populations with respect to several commonly used markers. In both species, we observed unexpected heterogeneity of stromal cells. These include numerous cells with molecular and morphological characteristics of pericytes, implicated as a source of myofibroblasts in other fibrotic tissues. We used mouse genetic tools to follow the fates of specific cell types in the bleomcyin-induced model of pulmonary fibrosis. Using inducible transgenic alleles to lineage trace pericyte-like cells in the alveolar interstitium, we show that this population proliferates in fibrotic regions. However, neither these cells nor their descendants express high levels of the myofibroblast marker alpha smooth muscle actin (Acta2, aSMA). We then used a Surfactant protein C-CreER(T2) knock-in allele to follow the fate of Type II alveolar cells (AEC2) in vivo. We find no evidence at the cellular or molecular level for epithelial to mesenchymal transition of labeled cells into myofibroblasts. Rather, bleomycin accelerates the previously reported conversion of AEC2 into AEC1 cells. Similarly, epithelial cells labeled with our Scgb1a1-CreER allele do not give rise to fibroblasts but generate both AEC2 and AEC1 cells in response to bleomycin-induced lung injury. Taken together, our results show a previously unappreciated heterogeneity of cell types proliferating in fibrotic lesions and exclude pericytes and two epithelial cell populations as the origin of myofibroblasts.


Subject(s)
Cell Differentiation/physiology , Pulmonary Alveoli/cytology , Pulmonary Fibrosis/pathology , Stromal Cells/cytology , Actins/metabolism , Animals , Biomarkers/metabolism , Bleomycin/toxicity , Bromodeoxyuridine , Cell Proliferation , Epithelial-Mesenchymal Transition/physiology , Extracellular Matrix Proteins/metabolism , Flow Cytometry , Humans , Immunohistochemistry , Mice , Myofibroblasts/cytology , Pericytes/metabolism , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/chemically induced , Real-Time Polymerase Chain Reaction , Stromal Cells/metabolism
3.
Lab Chip ; 19(3): 452-463, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30632575

ABSTRACT

Here, we describe methods for combining impedance spectroscopy measurements with electrical simulation to reveal transepithelial barrier function and tissue structure of human intestinal epithelium cultured inside an organ-on-chip microfluidic culture device. When performing impedance spectroscopy measurements, electrical simulation enabled normalization of cell layer resistance of epithelium cultured statically in a gut-on-a-chip, which enabled determination of transepithelial electrical resistance (TEER) values that can be compared across device platforms. During culture under dynamic flow, the formation of intestinal villi was accompanied by characteristic changes in impedance spectra both measured experimentally and verified with simulation, and we demonstrate that changes in cell layer capacitance may serve as measures of villi differentiation. This method for combining impedance spectroscopy with simulation can be adapted to better monitor cell layer characteristics within any organ-on-chip in vitro and to enable direct quantitative TEER comparisons between organ-on-chip platforms which should help to advance research on organ function.


Subject(s)
Dielectric Spectroscopy/instrumentation , Intestinal Mucosa/cytology , Lab-On-A-Chip Devices , Caco-2 Cells , Electric Stimulation , Equipment Design , Humans , Intestinal Mucosa/metabolism
4.
Nat Biomed Eng ; 3(7): 520-531, 2019 07.
Article in English | MEDLINE | ID: mdl-31086325

ABSTRACT

The diverse bacterial populations that comprise the commensal microbiome of the human intestine play a central role in health and disease. A method that sustains complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro would thus enable the investigation of host-microbiome interactions. Here, we show the extended coculture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota, using a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients. When compared to aerobic coculture conditions, the establishment of a transluminal hypoxia gradient in the chip increased intestinal barrier function and sustained a physiologically relevant level of microbial diversity, consisting of over 200 unique operational taxonomic units from 11 different genera and an abundance of obligate anaerobic bacteria, with ratios of Firmicutes and Bacteroidetes similar to those observed in human faeces. The intestine-on-a-chip may serve as a discovery tool for the development of microbiome-related therapeutics, probiotics and nutraceuticals.


Subject(s)
Cell Culture Techniques/methods , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/microbiology , Lab-On-A-Chip Devices , Microbiota/physiology , Microfluidic Analytical Techniques/methods , Anaerobiosis , Bacteria/classification , Bacteria/growth & development , Bacteroidetes , Biodiversity , Caco-2 Cells , Epithelial Cells , Feces/microbiology , Firmicutes , Host Microbial Interactions/physiology , Humans , Hypoxia , In Vitro Techniques , Mucus , Oxygen
5.
Nat Biomed Eng ; 3(7): 583, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31213704

ABSTRACT

In the version of this Article originally published, the authors mistakenly cited Fig. 5d in the sentence beginning 'Importantly, the microbiome cultured in these primary Intestine Chips...'; the correct citation is Supplementary Table 2. This has now been amended.

6.
J Biomed Mater Res B Appl Biomater ; 106(2): 716-725, 2018 02.
Article in English | MEDLINE | ID: mdl-28323397

ABSTRACT

Biological surgical scaffolds are used in plastic and reconstructive surgery to support structural reinforcement and regeneration of soft tissue defects. Macrophage and fibroblast cell populations heavily regulate scaffold integration into host tissue following implantation. In the present study, the biological host response to a commercially available surgical scaffold (Meso BioMatrix Surgical Mesh (MBM)) was investigated for up to 9 weeks after subcutaneous implantation; this scaffold promoted superior cell migration and infiltration previously in in vitro studies relative to other commercially available scaffolds. Infiltrating macrophages and fibroblasts phenotypes were assessed for evidence of inflammation and remodeling. At week 1, macrophages were the dominant cell population, but fibroblasts were most abundant at subsequent time points. At week 4, the scaffold supported inflammation modulation as indicated by M1 to M2 macrophage polarization; the foreign body giant cell response resolved by week 9. Unexpectedly, a fibroblast subpopulation expressed macrophage phenotypic markers, following a similar trend in transitioning from a proinflammatory to anti-inflammatory phenotype. Also, α-smooth muscle actin-expressing myofibroblasts were abundant at weeks 4 and 9, mirroring collagen expression and remodeling activity. MBM supported physiologic responses observed during normal wound healing, including cellular infiltration, host tissue ingrowth, remodeling of matrix proteins, and immune modulation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 716-725, 2018.


Subject(s)
Epithelium/chemistry , Materials Testing , Surgical Mesh , Tissue Scaffolds/chemistry , Wound Healing , Animals , Female , Fibroblasts/metabolism , Foreign-Body Reaction/metabolism , Giant Cells, Foreign-Body/metabolism , Macrophages/metabolism , Mice
7.
Lab Chip ; 17(13): 2264-2271, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28598479

ABSTRACT

Trans-epithelial electrical resistance (TEER) is broadly used as an experimental readout and a quality control assay for measuring the integrity of epithelial monolayers cultured under static conditions in vitro, however, there is no standard methodology for its application to microfluidic organ-on-a-chip (organ chip) cultures. Here, we describe a new microfluidic organ chip design that contains embedded electrodes, and we demonstrate its utility for assessing formation and disruption of barrier function both within a human lung airway chip lined by a fully differentiated mucociliary human airway epithelium and in a human gut chip lined by intestinal epithelial cells. These chips with integrated electrodes enable real-time, non-invasive monitoring of TEER and can be applied to measure barrier function in virtually any type of cultured cell.


Subject(s)
Electric Impedance , Epithelial Cells , Lab-On-A-Chip Devices , Models, Biological , Organ Culture Techniques/instrumentation , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/physiology , Epithelium/physiology , Equipment Design , Humans
8.
Tissue Eng Part A ; 22(3-4): 197-207, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26529401

ABSTRACT

Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage maturation and prevented shrinkage and distortion. This is the first demonstration of a stable, ear-shaped elastic cartilage engineered from auricular chondrocytes that underwent clinical-scale expansion in an immunocompetent animal over an extended period of time.


Subject(s)
Chondrocytes , Ear Cartilage , Ear , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Humans , Sheep
9.
Cartilage ; 5(4): 241-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26069703

ABSTRACT

OBJECTIVE: Our goal was to engineer cartilage in vivo using auricular chondrocytes that underwent clinically relevant expansion and using methodologies that could be easily translated into health care practice. DESIGN: Sheep and human chondrocytes were isolated from auricular cartilage biopsies and expanded in vitro. To reverse dedifferentiation, expanded cells were either mixed with cryopreserved P0 chondrocytes at the time of seeding onto porous collagen scaffolds or proliferated with basic fibroblast growth factor (bFGF). After 2-week in vitro incubation, seeded scaffolds were implanted subcutaneously in nude mice for 6 weeks. The neocartilage quality was evaluated histologically; DNA and glycosaminoglycans were quantified. Cell proliferation rates and collagen gene expression profiles were assessed. RESULTS: Clinically sufficient over 500-fold chondrocyte expansion was achieved at passage 3 (P3); cell dedifferentiation was confirmed by the simultaneous COL1A1/3A1 gene upregulation and COL2A1 downregulation. The chondrogenic phenotype of sheep but not human P3 cells was rescued by addition of cryopreserved P0 chondrocytes. With bFGF supplementation, chondrocytes achieved clinically sufficient expansion at P2; COL2A1 expression was not rescued but COL1A1/3A1genes were downregulated. Although bFGF failed to rescue COL2A1 expression during chondrocyte expansion in vitro, elastic neocartilage with obvious collagen II expression was observed on porous collagen scaffolds after implantation in mice for 6 weeks. CONCLUSIONS: Both animal and human auricular chondrocytes expanded with low-concentration bFGF supplementation formed high-quality elastic neocartilage on porous collagen scaffolds in vivo.

10.
J Clin Invest ; 123(7): 3025-36, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23921127

ABSTRACT

Gas exchange in the lung occurs within alveoli, air-filled sacs composed of type 2 and type 1 epithelial cells (AEC2s and AEC1s), capillaries, and various resident mesenchymal cells. Here, we use a combination of in vivo clonal lineage analysis, different injury/repair systems, and in vitro culture of purified cell populations to obtain new information about the contribution of AEC2s to alveolar maintenance and repair. Genetic lineage-tracing experiments showed that surfactant protein C-positive (SFTPC-positive) AEC2s self renew and differentiate over about a year, consistent with the population containing long-term alveolar stem cells. Moreover, if many AEC2s were specifically ablated, high-resolution imaging of intact lungs showed that individual survivors undergo rapid clonal expansion and daughter cell dispersal. Individual lineage-labeled AEC2s placed into 3D culture gave rise to self-renewing "alveolospheres," which contained both AEC2s and cells expressing multiple AEC1 markers, including HOPX, a new marker for AEC1s. Growth and differentiation of the alveolospheres occurred most readily when cocultured with primary PDGFRα⁺ lung stromal cells. This population included lipofibroblasts that normally reside close to AEC2s and may therefore contribute to a stem cell niche in the murine lung. Results suggest that a similar dynamic exists between AEC2s and mesenchymal cells in the human lung.


Subject(s)
Adult Stem Cells/physiology , Alveolar Epithelial Cells/physiology , Lung/pathology , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Cells, Cultured , Coculture Techniques , Lung Injury/chemically induced , Lung Injury/pathology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Stem Cell Niche , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL